Said assert assumes that ADDC will always have a glue node as its second
argument and is checked before we even know that we are actually performing the
relevant MLAL optimization. This is incorrect since on ARM we *CAN* codegen ADDC
with a use list based second argument. Thus to have both effects, I converted
the assert to a conditional check which if it fails we do not perform the
optimization.
In terms of tests I can not produce an ADDC from the IR level until I get in my
multiprecision optimization patch which is forthcoming. The tests for said patch
would cause this assert to fail implying that said tests will provide the
relevant tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184230 91177308-0d34-0410-b5e6-96231b3b80d8
"When assembling to the ARM instruction set, the .N qualifier produces
an assembler error and the .W qualifier has no effect."
In the pre-matcher handler in the asm parser the ".w" (wide) qualifier
when in ARM mode is now discarded. And an error message is now
produced when the ".n" (narrow) qualifier is used in ARM mode.
Test cases for these were added.
rdar://14064574
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184224 91177308-0d34-0410-b5e6-96231b3b80d8
When producing objects that are abi compliant we are
marking neither the object file nor the assembly file
correctly and thus generate warnings.
We need to set the EF_CPIC flag in the ELF header when
generating direct object.
Note that the warning is only generated when compiling without PIC.
When compiling with clang the warning will be suppressed by supplying:
-Wa,-mno-shared -Wa,-call_nonpic
Also the following directive should also be added:
.option pic0
when compiling without PIC, This eliminates the need for supplying:
-mno-shared -call_nonpic
on the assembler command line.
Patch by Douglas Gilmore
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184220 91177308-0d34-0410-b5e6-96231b3b80d8
For decoding, keep the current behavior of always decoding these as their REP
versions. In the future, this could be improved to recognize the cases where
these behave as XACQUIRE and XRELEASE and decode them as such.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184207 91177308-0d34-0410-b5e6-96231b3b80d8
When using a positive offset, literal loads where encoded
as if it was negative, because:
- The sign bit was not assigned to an operand
- The addrmode_imm12 operand was not encoding the sign bit correctly
This patch also makes the assembler look at the .w/.n specifier for
loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184182 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes two previous issues:
- Negative offsets were not correctly disassembled
- The decoded opcodes were not the right one
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184180 91177308-0d34-0410-b5e6-96231b3b80d8
Someone may want to do something crazy, like replace these objects if they
change or something.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184175 91177308-0d34-0410-b5e6-96231b3b80d8
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184067 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184066 91177308-0d34-0410-b5e6-96231b3b80d8
Replace the ill-defined MinLatency and ILPWindow properties with
with straightforward buffer sizes:
MCSchedMode::MicroOpBufferSize
MCProcResourceDesc::BufferSize
These can be used to more precisely model instruction execution if desired.
Disabled some misched tests temporarily. They'll be reenabled in a few commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184032 91177308-0d34-0410-b5e6-96231b3b80d8
Also add a seperate vector lit test file, since r600 doesn't seem to handle
v2i32 load/store yet, but we can test both for SI.
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184021 91177308-0d34-0410-b5e6-96231b3b80d8
We were using RAT_INST_STORE_RAW, which seemed to work, but the docs
say this instruction doesn't exist for Cayman, so it's probably safer
to use a documented instruction instead.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184015 91177308-0d34-0410-b5e6-96231b3b80d8
This is a resubmit of r182877, which was reverted because it broken
MCJIT tests on ARM. The patch leaves MCJIT on ARM as it was before: only
enabled for iOS. I've CC'ed people from the original review and revert.
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl, but not MCJIT.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of lnt test-suite on A15 hardware with --optimize-option=-O0
and all the tests pass. All the tests also pass on x86 make check-all. I
also re-ran the check-all tests that failed on ARM, and they all seem to
pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183966 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the PRED_BAD has been removed, this is failing the Clang
-Werror build due to -Wcovered-switch-default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183863 91177308-0d34-0410-b5e6-96231b3b80d8
I'm taking David Blaikie's suggestion to use an
Optional<PPC::Predicate> return value instead. That's the right
solution for this problem. Thanks for pointing out that possibility!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183858 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preparatory patch for fast-isel support. The instruction
selector will need to access some functions in PPCGenCallingConv.inc,
which in turn requires several helper functions to be defined. These
are currently defined near the only use of PCCGenCallingConv.inc,
inside PPCISelLowering.cpp. This patch moves the declaration of the
functions into the associated header file to provide the needed
visibility.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183844 91177308-0d34-0410-b5e6-96231b3b80d8
Allows returning a PPC::Predicate from a function with a no-predicate
value possible. Preparatory patch for fast-isel on PPC64 ELF. No
behavioral change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183841 91177308-0d34-0410-b5e6-96231b3b80d8
I've been comparing the object file output of LLVM's integrated
assembler against the external assembler on PowerPC, and one
area where differences still remain are in DWARF sections.
In particular, the GNU assembler generates .debug_frame and
.debug_line sections using a code alignment factor of 4, since
all PowerPC instructions have size 4 and must be aligned to a
multiple of 4. However, current MC code hard-codes a code
alignment factor of 1.
This patch changes this by adding a "minimum instruction alignment"
data element to MCAsmInfo and using this as code alignment factor.
This requires passing a MCContext into MCDwarfLineAddr::Encode
and MCDwarfLineAddr::EncodeAdvanceLoc. Note that one caller,
MCDwarfLineAddr::Write, didn't actually have that information
available. However, it turns out that this routine is in fact
never used in the whole code base, so the patch simply removes
it. If it turns out to be needed again at a later time, it
could be re-added with an updated interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183834 91177308-0d34-0410-b5e6-96231b3b80d8
The pass emits a call to sqrt that has attribute "read-none". This call will be
converted to an ISD::FSQRT node during DAG construction, which will turn into
a mips native sqrt instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183802 91177308-0d34-0410-b5e6-96231b3b80d8
Sign- and zero-extension folding was slightly incorrect because it wasn't checking that the shift on extensions was zero. Further, I recently added AND rd, rn, #255 as a form of 8-bit zero extension, and failed to add the folding code for it.
This patch fixes both issues.
This patch fixes both, and the test should remain the same:
test/CodeGen/ARM/fast-isel-fold.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183794 91177308-0d34-0410-b5e6-96231b3b80d8
Negative zero is returned by the primary expression parser as INT32_MIN, so all that the method needs to do is to accept this value.
Behavior already present for Thumb2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183734 91177308-0d34-0410-b5e6-96231b3b80d8
- Don't use assert(0), or tests may pass or fail according to assertions.
- For now, The tests are marked as XFAIL for win32 hosts.
FIXME: Could we avoid XFAIL to specify triple in the RUN lines?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183728 91177308-0d34-0410-b5e6-96231b3b80d8
Some ARM CPUs only support ARM mode (ancient v4 ones, for example) and some
only support Thumb mode (M-class ones currently). This makes sure such CPUs
default to the correct mode and makes the AsmParser diagnose an attempt to
switch modes incorrectly.
rdar://14024354
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183710 91177308-0d34-0410-b5e6-96231b3b80d8
Previously LEA64_32r went through virtually the entire backend thinking it was
using 32-bit registers until its blissful illusions were cruelly snatched away
by MCInstLower and 64-bit equivalents were substituted at the last minute.
This patch makes it behave normally, and take 64-bit registers as sources all
the way through. Previous uses (for 32-bit arithmetic) are accommodated via
SUBREG_TO_REG instructions which make the types and classes agree properly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183693 91177308-0d34-0410-b5e6-96231b3b80d8
A plain "sc" without argument is supposed to be treated like "sc 0"
by the assembler. This patch adds a corresponding alias.
Problem reported by Joerg Sonnenberger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183687 91177308-0d34-0410-b5e6-96231b3b80d8
The extended branch mnemonics are supposed to use an implied CR0
if there is no explicit condition register specified. This patch
adds extra variants of the mnemonics to this effect.
Problem reported by Joerg Sonnenberger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183686 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes some redundancy by generating the extended branch
mnemonics via a multiclass.
No change in behaviour expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183685 91177308-0d34-0410-b5e6-96231b3b80d8
the Mips16 port. A few of the psuedos could either take signed
or unsigned arguments and I did not distinguish the case and improperly
rejected some valid cases that the assembler had previously accepted
when they were pure pseudos that expanded as assembly instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183633 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to ARM unwind opcode assembler:
* Fix multiple .save or .vsave directives. Besides, the
order is preserved now.
* For the directives which will generate multiple opcodes,
such as ".save {r0-r11}", the order of the unwind opcode
is fixed now, i.e. the registers with less encoding value
are popped first.
* Fix the $sp offset calculation. Now, we can use the
.setfp, .pad, .save, and .vsave directives at any order.
Changes to test cases:
* Add test cases to check the order of multiple opcodes
for the .save directive.
* Fix the incorrect $sp offset in the test case. The
stack pointer offset specified in the test case was
incorrect. (Changed test cases: ehabi-mc-section.ll and
ehabi-mc.ll)
* The opcode to restore $sp are slightly reordered. The
behavior are not changed, and the new output is same
as the output of GNU as. (Changed test cases:
eh-directive-pad.s and eh-directive-setfp.s)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183627 91177308-0d34-0410-b5e6-96231b3b80d8
The register classes when emitting loads weren't quite restricting enough, leading to MI verification failure on the result register.
These are new failures that weren't there the first time I tried enabling ARM FastISel for new targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183624 91177308-0d34-0410-b5e6-96231b3b80d8
Handle the case when the disassembler table can't tell
the difference between some encodings of QADD and CPS.
Add some necessary safe guards in CPS decoding as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183610 91177308-0d34-0410-b5e6-96231b3b80d8
This is using a hint from AMD APP OpenCL Programming Guide with
empirically tweaked parameters.
I used Unigine Heaven 3.0 to determine best parameters on my system
(i7 2600/Radeon 6950/Kernel 3.9.4) the benchmark :
it went from 38.8 average fps to 39.6, which is ~3% gain.
(Lightmark 2008.2 gain is much more marginal: from 537 to 539)
There is no lit test provided as the parameter were determined
empirically and it it would be nearly impossiblet to find a test
program that check for optimal behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183593 91177308-0d34-0410-b5e6-96231b3b80d8
On PPC32, [su]div,rem on i64 types are transformed into runtime library
function calls. As a result, they are not allowed in counter-based loops (the
counter-loops verification pass caught this error; this change fixes PR16169).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183581 91177308-0d34-0410-b5e6-96231b3b80d8
We weren't computing structure size correctly and we were relying on
the original alloca instruction to compute the offset, which isn't
always reliable.
Reviewed-by: Vincent Lejeune <vljn@ovi.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183568 91177308-0d34-0410-b5e6-96231b3b80d8
This should simplify the subtarget definitions and make it easier to
add new ones.
Reviewed-by: Vincent Lejeune <vljn@ovi.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183566 91177308-0d34-0410-b5e6-96231b3b80d8
My recent ARM FastISel patch exposed this bug:
http://llvm.org/bugs/show_bug.cgi?id=16178
The root cause is that it can't select integer sext/zext pre-ARMv6 and
asserts out.
The current integer sext/zext code doesn't handle other cases gracefully
either, so this patch makes it handle all sext and zext from i1/i8/i16
to i8/i16/i32, with and without ARMv6, both in Thumb and ARM mode. This
should fix the bug as well as make FastISel faster because it bails to
SelectionDAG less often. See fastisel-ext.patch for this.
fastisel-ext-tests.patch changes current tests to always use reg-imm AND
for 8-bit zext instead of UXTB. This simplifies code since it is
supported on ARMv4t and later, and at least on A15 both should perform
exactly the same (both have exec 1 uop 1, type I).
2013-05-31-char-shift-crash.ll is a bitcode version of the above bug
16178 repro.
fast-isel-ext.ll tests all sext/zext combinations that ARM FastISel
should now handle.
Note that my ARM FastISel enabling patch was reverted due to a separate
failure when dealing with MCJIT, I'll fix this second failure and then
turn FastISel on again for non-iOS ARM targets.
I've tested "make check-all" on my x86 box, and "lnt test-suite" on A15
hardware.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183551 91177308-0d34-0410-b5e6-96231b3b80d8