llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

2776 lines
91 KiB
C++
Raw Normal View History

//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/VectorUtils.h"
#include <algorithm>
#include <map>
using namespace llvm;
#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"
static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
cl::desc("Attempt to vectorize horizontal reductions"));
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
"slp-vectorize-hor-store", cl::init(false), cl::Hidden,
cl::desc(
"Attempt to vectorize horizontal reductions feeding into a store"));
namespace {
static const unsigned MinVecRegSize = 128;
static const unsigned RecursionMaxDepth = 12;
/// A helper class for numbering instructions in multiple blocks.
/// Numbers start at zero for each basic block.
struct BlockNumbering {
BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
BlockNumbering() : BB(nullptr), Valid(false) {}
void numberInstructions() {
unsigned Loc = 0;
InstrIdx.clear();
InstrVec.clear();
// Number the instructions in the block.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
InstrIdx[it] = Loc++;
InstrVec.push_back(it);
assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
}
Valid = true;
}
int getIndex(Instruction *I) {
assert(I->getParent() == BB && "Invalid instruction");
if (!Valid)
numberInstructions();
assert(InstrIdx.count(I) && "Unknown instruction");
return InstrIdx[I];
}
Instruction *getInstruction(unsigned loc) {
if (!Valid)
numberInstructions();
assert(InstrVec.size() > loc && "Invalid Index");
return InstrVec[loc];
}
void forget() { Valid = false; }
private:
/// The block we are numbering.
BasicBlock *BB;
/// Is the block numbered.
bool Valid;
/// Maps instructions to numbers and back.
SmallDenseMap<Instruction *, int> InstrIdx;
/// Maps integers to Instructions.
SmallVector<Instruction *, 32> InstrVec;
};
/// \returns the parent basic block if all of the instructions in \p VL
/// are in the same block or null otherwise.
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
return nullptr;
BasicBlock *BB = I0->getParent();
for (int i = 1, e = VL.size(); i < e; i++) {
Instruction *I = dyn_cast<Instruction>(VL[i]);
if (!I)
return nullptr;
if (BB != I->getParent())
return nullptr;
}
return BB;
}
/// \returns True if all of the values in \p VL are constants.
static bool allConstant(ArrayRef<Value *> VL) {
for (unsigned i = 0, e = VL.size(); i < e; ++i)
if (!isa<Constant>(VL[i]))
return false;
return true;
}
/// \returns True if all of the values in \p VL are identical.
static bool isSplat(ArrayRef<Value *> VL) {
for (unsigned i = 1, e = VL.size(); i < e; ++i)
if (VL[i] != VL[0])
return false;
return true;
}
/// \returns The opcode if all of the Instructions in \p VL have the same
/// opcode, or zero.
static unsigned getSameOpcode(ArrayRef<Value *> VL) {
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
return 0;
unsigned Opcode = I0->getOpcode();
for (int i = 1, e = VL.size(); i < e; i++) {
Instruction *I = dyn_cast<Instruction>(VL[i]);
if (!I || Opcode != I->getOpcode())
return 0;
}
return Opcode;
}
/// \returns \p I after propagating metadata from \p VL.
static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
Instruction *I0 = cast<Instruction>(VL[0]);
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
I0->getAllMetadataOtherThanDebugLoc(Metadata);
for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
unsigned Kind = Metadata[i].first;
MDNode *MD = Metadata[i].second;
for (int i = 1, e = VL.size(); MD && i != e; i++) {
Instruction *I = cast<Instruction>(VL[i]);
MDNode *IMD = I->getMetadata(Kind);
switch (Kind) {
default:
MD = nullptr; // Remove unknown metadata
break;
case LLVMContext::MD_tbaa:
MD = MDNode::getMostGenericTBAA(MD, IMD);
break;
case LLVMContext::MD_fpmath:
MD = MDNode::getMostGenericFPMath(MD, IMD);
break;
}
}
I->setMetadata(Kind, MD);
}
return I;
}
/// \returns The type that all of the values in \p VL have or null if there
/// are different types.
static Type* getSameType(ArrayRef<Value *> VL) {
Type *Ty = VL[0]->getType();
for (int i = 1, e = VL.size(); i < e; i++)
if (VL[i]->getType() != Ty)
return nullptr;
return Ty;
}
/// \returns True if the ExtractElement instructions in VL can be vectorized
/// to use the original vector.
static bool CanReuseExtract(ArrayRef<Value *> VL) {
assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
// Check if all of the extracts come from the same vector and from the
// correct offset.
Value *VL0 = VL[0];
ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
Value *Vec = E0->getOperand(0);
// We have to extract from the same vector type.
unsigned NElts = Vec->getType()->getVectorNumElements();
if (NElts != VL.size())
return false;
// Check that all of the indices extract from the correct offset.
ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
if (!CI || CI->getZExtValue())
return false;
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
return false;
}
return true;
}
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right) {
SmallVector<Value *, 16> OrigLeft, OrigRight;
bool AllSameOpcodeLeft = true;
bool AllSameOpcodeRight = true;
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
Instruction *I = cast<Instruction>(VL[i]);
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
OrigLeft.push_back(V0);
OrigRight.push_back(V1);
Instruction *I0 = dyn_cast<Instruction>(V0);
Instruction *I1 = dyn_cast<Instruction>(V1);
// Check whether all operands on one side have the same opcode. In this case
// we want to preserve the original order and not make things worse by
// reordering.
AllSameOpcodeLeft = I0;
AllSameOpcodeRight = I1;
if (i && AllSameOpcodeLeft) {
if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
if(P0->getOpcode() != I0->getOpcode())
AllSameOpcodeLeft = false;
} else
AllSameOpcodeLeft = false;
}
if (i && AllSameOpcodeRight) {
if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
if(P1->getOpcode() != I1->getOpcode())
AllSameOpcodeRight = false;
} else
AllSameOpcodeRight = false;
}
// Sort two opcodes. In the code below we try to preserve the ability to use
// broadcast of values instead of individual inserts.
// vl1 = load
// vl2 = phi
// vr1 = load
// vr2 = vr2
// = vl1 x vr1
// = vl2 x vr2
// If we just sorted according to opcode we would leave the first line in
// tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
// = vl1 x vr1
// = vr2 x vl2
// Because vr2 and vr1 are from the same load we loose the opportunity of a
// broadcast for the packed right side in the backend: we have [vr1, vl2]
// instead of [vr1, vr2=vr1].
if (I0 && I1) {
if(!i && I0->getOpcode() > I1->getOpcode()) {
Left.push_back(I1);
Right.push_back(I0);
} else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
// Try not to destroy a broad cast for no apparent benefit.
Left.push_back(I1);
Right.push_back(I0);
} else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
// Try preserve broadcasts.
Left.push_back(I1);
Right.push_back(I0);
} else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
// Try preserve broadcasts.
Left.push_back(I1);
Right.push_back(I0);
} else {
Left.push_back(I0);
Right.push_back(I1);
}
continue;
}
// One opcode, put the instruction on the right.
if (I0) {
Left.push_back(V1);
Right.push_back(I0);
continue;
}
Left.push_back(V0);
Right.push_back(V1);
}
bool LeftBroadcast = isSplat(Left);
bool RightBroadcast = isSplat(Right);
// Don't reorder if the operands where good to begin with.
if (!(LeftBroadcast || RightBroadcast) &&
(AllSameOpcodeRight || AllSameOpcodeLeft)) {
Left = OrigLeft;
Right = OrigRight;
}
}
/// Bottom Up SLP Vectorizer.
class BoUpSLP {
public:
typedef SmallVector<Value *, 8> ValueList;
typedef SmallVector<Instruction *, 16> InstrList;
typedef SmallPtrSet<Value *, 16> ValueSet;
typedef SmallVector<StoreInst *, 8> StoreList;
BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
DominatorTree *Dt) :
F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
Builder(Se->getContext()) {
// Setup the block numbering utility for all of the blocks in the
// function.
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
BasicBlock *BB = it;
BlocksNumbers[BB] = BlockNumbering(BB);
}
}
/// \brief Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root.
Value *vectorizeTree();
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
/// Construct a vectorizable tree that starts at \p Roots and is possibly
/// used by a reduction of \p RdxOps.
void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
ExternalUses.clear();
MemBarrierIgnoreList.clear();
}
/// \returns true if the memory operations A and B are consecutive.
bool isConsecutiveAccess(Value *A, Value *B);
/// \brief Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
private:
struct TreeEntry;
/// \returns the cost of the vectorizable entry.
int getEntryCost(TreeEntry *E);
/// This is the recursive part of buildTree.
void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
/// Vectorize a single entry in the tree.
Value *vectorizeTree(TreeEntry *E);
/// Vectorize a single entry in the tree, starting in \p VL.
Value *vectorizeTree(ArrayRef<Value *> VL);
/// \returns the pointer to the vectorized value if \p VL is already
/// vectorized, or NULL. They may happen in cycles.
Value *alreadyVectorized(ArrayRef<Value *> VL) const;
/// \brief Take the pointer operand from the Load/Store instruction.
/// \returns NULL if this is not a valid Load/Store instruction.
static Value *getPointerOperand(Value *I);
/// \brief Take the address space operand from the Load/Store instruction.
/// \returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
int getGatherCost(Type *Ty);
/// \returns the scalarization cost for this list of values. Assuming that
/// this subtree gets vectorized, we may need to extract the values from the
/// roots. This method calculates the cost of extracting the values.
int getGatherCost(ArrayRef<Value *> VL);
/// \returns the AA location that is being access by the instruction.
AliasAnalysis::Location getLocation(Instruction *I);
/// \brief Checks if it is possible to sink an instruction from
/// \p Src to \p Dst.
/// \returns the pointer to the barrier instruction if we can't sink.
Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
/// \returns the index of the last instruction in the BB from \p VL.
int getLastIndex(ArrayRef<Value *> VL);
/// \returns the Instruction in the bundle \p VL.
Instruction *getLastInstruction(ArrayRef<Value *> VL);
/// \brief Set the Builder insert point to one after the last instruction in
/// the bundle
void setInsertPointAfterBundle(ArrayRef<Value *> VL);
/// \returns a vector from a collection of scalars in \p VL.
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
/// \returns whether the VectorizableTree is fully vectoriable and will
/// be beneficial even the tree height is tiny.
bool isFullyVectorizableTinyTree();
struct TreeEntry {
TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
NeedToGather(0) {}
/// \returns true if the scalars in VL are equal to this entry.
bool isSame(ArrayRef<Value *> VL) const {
assert(VL.size() == Scalars.size() && "Invalid size");
return std::equal(VL.begin(), VL.end(), Scalars.begin());
}
/// A vector of scalars.
ValueList Scalars;
/// The Scalars are vectorized into this value. It is initialized to Null.
Value *VectorizedValue;
/// The index in the basic block of the last scalar.
int LastScalarIndex;
/// Do we need to gather this sequence ?
bool NeedToGather;
};
/// Create a new VectorizableTree entry.
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
VectorizableTree.push_back(TreeEntry());
int idx = VectorizableTree.size() - 1;
TreeEntry *Last = &VectorizableTree[idx];
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
Last->NeedToGather = !Vectorized;
if (Vectorized) {
Last->LastScalarIndex = getLastIndex(VL);
for (int i = 0, e = VL.size(); i != e; ++i) {
assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
ScalarToTreeEntry[VL[i]] = idx;
}
} else {
Last->LastScalarIndex = 0;
MustGather.insert(VL.begin(), VL.end());
}
return Last;
}
/// -- Vectorization State --
/// Holds all of the tree entries.
std::vector<TreeEntry> VectorizableTree;
/// Maps a specific scalar to its tree entry.
SmallDenseMap<Value*, int> ScalarToTreeEntry;
/// A list of scalars that we found that we need to keep as scalars.
ValueSet MustGather;
/// This POD struct describes one external user in the vectorized tree.
struct ExternalUser {
ExternalUser (Value *S, llvm::User *U, int L) :
Scalar(S), User(U), Lane(L){};
// Which scalar in our function.
Value *Scalar;
// Which user that uses the scalar.
llvm::User *User;
// Which lane does the scalar belong to.
int Lane;
};
typedef SmallVector<ExternalUser, 16> UserList;
/// A list of values that need to extracted out of the tree.
/// This list holds pairs of (Internal Scalar : External User).
UserList ExternalUses;
/// A list of instructions to ignore while sinking
/// memory instructions. This map must be reset between runs of getCost.
ValueSet MemBarrierIgnoreList;
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
/// A list of blocks that we are going to CSE.
SetVector<BasicBlock *> CSEBlocks;
/// Numbers instructions in different blocks.
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
/// Reduction operators.
ValueSet *RdxOps;
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
const DataLayout *DL;
TargetTransformInfo *TTI;
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
/// Instruction builder to construct the vectorized tree.
IRBuilder<> Builder;
};
void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
deleteTree();
RdxOps = Rdx;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
// Collect the values that we need to extract from the tree.
for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
TreeEntry *Entry = &VectorizableTree[EIdx];
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
// No need to handle users of gathered values.
if (Entry->NeedToGather)
continue;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
for (User *U : Scalar->users()) {
DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
// Skip in-tree scalars that become vectors.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
if (ScalarToTreeEntry.count(U)) {
DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
*U << ".\n");
int Idx = ScalarToTreeEntry[U]; (void) Idx;
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
continue;
}
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
Instruction *UserInst = dyn_cast<Instruction>(U);
if (!UserInst)
continue;
// Ignore uses that are part of the reduction.
if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
continue;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
Lane << " from " << *Scalar << ".\n");
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
}
}
}
}
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
bool SameTy = getSameType(VL); (void)SameTy;
assert(SameTy && "Invalid types!");
if (Depth == RecursionMaxDepth) {
DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
newTreeEntry(VL, false);
return;
}
// Don't handle vectors.
if (VL[0]->getType()->isVectorTy()) {
DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
newTreeEntry(VL, false);
return;
}
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
if (SI->getValueOperand()->getType()->isVectorTy()) {
DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
newTreeEntry(VL, false);
return;
}
// If all of the operands are identical or constant we have a simple solution.
if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
!getSameOpcode(VL)) {
DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
newTreeEntry(VL, false);
return;
}
// We now know that this is a vector of instructions of the same type from
// the same block.
// Check if this is a duplicate of another entry.
if (ScalarToTreeEntry.count(VL[0])) {
int Idx = ScalarToTreeEntry[VL[0]];
TreeEntry *E = &VectorizableTree[Idx];
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
if (E->Scalars[i] != VL[i]) {
DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
newTreeEntry(VL, false);
return;
}
}
DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
return;
}
// Check that none of the instructions in the bundle are already in the tree.
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
if (ScalarToTreeEntry.count(VL[i])) {
DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
") is already in tree.\n");
newTreeEntry(VL, false);
return;
}
}
// If any of the scalars appears in the table OR it is marked as a value that
// needs to stat scalar then we need to gather the scalars.
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
newTreeEntry(VL, false);
return;
}
}
// Check that all of the users of the scalars that we want to vectorize are
// schedulable.
Instruction *VL0 = cast<Instruction>(VL[0]);
int MyLastIndex = getLastIndex(VL);
BasicBlock *BB = cast<Instruction>(VL0)->getParent();
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
Instruction *Scalar = cast<Instruction>(VL[i]);
DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
for (User *U : Scalar->users()) {
DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI) {
DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
newTreeEntry(VL, false);
return;
}
// We don't care if the user is in a different basic block.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
BasicBlock *UserBlock = UI->getParent();
if (UserBlock != BB) {
DEBUG(dbgs() << "SLP: User from a different basic block "
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
<< *UI << ". \n");
continue;
}
// If this is a PHINode within this basic block then we can place the
// extract wherever we want.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
if (isa<PHINode>(*UI)) {
DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
continue;
}
// Check if this is a safe in-tree user.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
if (ScalarToTreeEntry.count(UI)) {
int Idx = ScalarToTreeEntry[UI];
int VecLocation = VectorizableTree[Idx].LastScalarIndex;
if (VecLocation <= MyLastIndex) {
DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
newTreeEntry(VL, false);
return;
}
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
VecLocation << " vector value (" << *Scalar << ") at #"
<< MyLastIndex << ".\n");
continue;
}
// This user is part of the reduction.
if (RdxOps && RdxOps->count(UI))
continue;
// Make sure that we can schedule this unknown user.
BlockNumbering &BN = BlocksNumbers[BB];
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
int UserIndex = BN.getIndex(UI);
if (UserIndex < MyLastIndex) {
DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
<< *UI << ". \n");
newTreeEntry(VL, false);
return;
}
}
}
// Check that every instructions appears once in this bundle.
for (unsigned i = 0, e = VL.size(); i < e; ++i)
for (unsigned j = i+1; j < e; ++j)
if (VL[i] == VL[j]) {
DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
newTreeEntry(VL, false);
return;
}
// Check that instructions in this bundle don't reference other instructions.
// The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
for (User *U : VL[i]->users()) {
for (unsigned j = 0; j < e; ++j) {
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
if (i != j && U == VL[j]) {
DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
newTreeEntry(VL, false);
return;
}
}
}
}
DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
unsigned Opcode = getSameOpcode(VL);
// Check if it is safe to sink the loads or the stores.
if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
Instruction *Last = getLastInstruction(VL);
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
if (VL[i] == Last)
continue;
Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
if (Barrier) {
DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
<< "\n because of " << *Barrier << ". Gathering.\n");
newTreeEntry(VL, false);
return;
}
}
}
switch (Opcode) {
case Instruction::PHI: {
PHINode *PH = dyn_cast<PHINode>(VL0);
// Check for terminator values (e.g. invoke).
for (unsigned j = 0; j < VL.size(); ++j)
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
TerminatorInst *Term = dyn_cast<TerminatorInst>(
cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
if (Term) {
DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
newTreeEntry(VL, false);
return;
}
}
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
PH->getIncomingBlock(i)));
buildTree_rec(Operands, Depth + 1);
}
return;
}
case Instruction::ExtractElement: {
bool Reuse = CanReuseExtract(VL);
if (Reuse) {
DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
}
newTreeEntry(VL, Reuse);
return;
}
case Instruction::Load: {
// Check if the loads are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
LoadInst *L = cast<LoadInst>(VL[i]);
if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
return;
}
}
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
return;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
for (unsigned i = 0; i < VL.size(); ++i) {
Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
return;
}
}
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of casts.\n");
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
buildTree_rec(Operands, Depth+1);
}
return;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Check that all of the compares have the same predicate.
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
CmpInst *Cmp = cast<CmpInst>(VL[i]);
if (Cmp->getPredicate() != P0 ||
Cmp->getOperand(0)->getType() != ComparedTy) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
return;
}
}
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of compares.\n");
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
buildTree_rec(Operands, Depth+1);
}
return;
}
case Instruction::Select:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
// Sort operands of the instructions so that each side is more likely to
// have the same opcode.
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right);
buildTree_rec(Left, Depth + 1);
buildTree_rec(Right, Depth + 1);
return;
}
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
buildTree_rec(Operands, Depth+1);
}
return;
}
case Instruction::Store: {
// Check if the stores are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
return;
}
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of stores.\n");
ValueList Operands;
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
// We can ignore these values because we are sinking them down.
MemBarrierIgnoreList.insert(VL.begin(), VL.end());
buildTree_rec(Operands, Depth + 1);
return;
}
case Instruction::Call: {
// Check if the calls are all to the same vectorizable intrinsic.
IntrinsicInst *II = dyn_cast<IntrinsicInst>(VL[0]);
Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
if (!isTriviallyVectorizable(ID)) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
}
Function *Int = II->getCalledFunction();
for (unsigned i = 1, e = VL.size(); i != e; ++i) {
IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[i]);
if (!II2 || II2->getCalledFunction() != Int) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: mismatched calls:" << *II << "!=" << *VL[i]
<< "\n");
return;
}
}
newTreeEntry(VL, true);
for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j) {
IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[j]);
Operands.push_back(II2->getArgOperand(i));
}
buildTree_rec(Operands, Depth + 1);
}
return;
}
default:
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
return;
}
}
int BoUpSLP::getEntryCost(TreeEntry *E) {
ArrayRef<Value*> VL = E->Scalars;
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
if (E->NeedToGather) {
if (allConstant(VL))
return 0;
if (isSplat(VL)) {
return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
}
return getGatherCost(E->Scalars);
}
assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
"Invalid VL");
Instruction *VL0 = cast<Instruction>(VL[0]);
unsigned Opcode = VL0->getOpcode();
switch (Opcode) {
case Instruction::PHI: {
return 0;
}
case Instruction::ExtractElement: {
if (CanReuseExtract(VL)) {
int DeadCost = 0;
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
if (E->hasOneUse())
// Take credit for instruction that will become dead.
DeadCost +=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
}
return -DeadCost;
}
return getGatherCost(VecTy);
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
// Calculate the cost of this instruction.
int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
VL0->getType(), SrcTy);
VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
return VecCost - ScalarCost;
}
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Calculate the cost of this instruction.
int ScalarCost = 0;
int VecCost = 0;
if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
Opcode == Instruction::Select) {
VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
ScalarCost = VecTy->getNumElements() *
TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
} else {
// Certain instructions can be cheaper to vectorize if they have a
// constant second vector operand.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
// If all operands are exactly the same ConstantInt then set the
// operand kind to OK_UniformConstantValue.
// If instead not all operands are constants, then set the operand kind
// to OK_AnyValue. If all operands are constants but not the same,
// then set the operand kind to OK_NonUniformConstantValue.
ConstantInt *CInt = nullptr;
for (unsigned i = 0; i < VL.size(); ++i) {
const Instruction *I = cast<Instruction>(VL[i]);
if (!isa<ConstantInt>(I->getOperand(1))) {
Op2VK = TargetTransformInfo::OK_AnyValue;
break;
}
if (i == 0) {
CInt = cast<ConstantInt>(I->getOperand(1));
continue;
}
if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
CInt != cast<ConstantInt>(I->getOperand(1)))
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
}
ScalarCost =
VecTy->getNumElements() *
TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
}
return VecCost - ScalarCost;
}
case Instruction::Load: {
// Cost of wide load - cost of scalar loads.
int ScalarLdCost = VecTy->getNumElements() *
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
return VecLdCost - ScalarLdCost;
}
case Instruction::Store: {
// We know that we can merge the stores. Calculate the cost.
int ScalarStCost = VecTy->getNumElements() *
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
return VecStCost - ScalarStCost;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
IntrinsicInst *II = cast<IntrinsicInst>(CI);
Intrinsic::ID ID = II->getIntrinsicID();
// Calculate the cost of the scalar and vector calls.
SmallVector<Type*, 4> ScalarTys, VecTys;
for (unsigned op = 0, opc = II->getNumArgOperands(); op!= opc; ++op) {
ScalarTys.push_back(CI->getArgOperand(op)->getType());
VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
VecTy->getNumElements()));
}
int ScalarCallCost = VecTy->getNumElements() *
TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
<< " (" << VecCallCost << "-" << ScalarCallCost << ")"
<< " for " << *II << "\n");
return VecCallCost - ScalarCallCost;
}
default:
llvm_unreachable("Unknown instruction");
}
}
bool BoUpSLP::isFullyVectorizableTinyTree() {
DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
VectorizableTree.size() << " is fully vectorizable .\n");
// We only handle trees of height 2.
if (VectorizableTree.size() != 2)
return false;
// Handle splat stores.
if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
return true;
// Gathering cost would be too much for tiny trees.
if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
return false;
return true;
}
int BoUpSLP::getTreeCost() {
int Cost = 0;
DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
VectorizableTree.size() << ".\n");
// We only vectorize tiny trees if it is fully vectorizable.
if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
if (!VectorizableTree.size()) {
assert(!ExternalUses.size() && "We should not have any external users");
}
return INT_MAX;
}
unsigned BundleWidth = VectorizableTree[0].Scalars.size();
for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
int C = getEntryCost(&VectorizableTree[i]);
DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
<< *VectorizableTree[i].Scalars[0] << " .\n");
Cost += C;
}
SmallSet<Value *, 16> ExtractCostCalculated;
int ExtractCost = 0;
for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
I != E; ++I) {
// We only add extract cost once for the same scalar.
if (!ExtractCostCalculated.insert(I->Scalar))
continue;
VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
I->Lane);
}
DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
return Cost + ExtractCost;
}
int BoUpSLP::getGatherCost(Type *Ty) {
int Cost = 0;
for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
return Cost;
}
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
// Find the type of the operands in VL.
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
// Find the cost of inserting/extracting values from the vector.
return getGatherCost(VecTy);
}
AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return AA->getLocation(SI);
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return AA->getLocation(LI);
return AliasAnalysis::Location();
}
Value *BoUpSLP::getPointerOperand(Value *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
return nullptr;
}
unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
if (LoadInst *L = dyn_cast<LoadInst>(I))
return L->getPointerAddressSpace();
if (StoreInst *S = dyn_cast<StoreInst>(I))
return S->getPointerAddressSpace();
return -1;
}
bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
Value *PtrA = getPointerOperand(A);
Value *PtrB = getPointerOperand(B);
unsigned ASA = getAddressSpaceOperand(A);
unsigned ASB = getAddressSpaceOperand(B);
// Check that the address spaces match and that the pointers are valid.
if (!PtrA || !PtrB || (ASA != ASB))
return false;
// Make sure that A and B are different pointers of the same type.
if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
return false;
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
APInt OffsetDelta = OffsetB - OffsetA;
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
// Check if they are based on the same pointer. That makes the offsets
// sufficient.
if (PtrA == PtrB)
return OffsetDelta == Size;
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
// Compute the necessary base pointer delta to have the necessary final delta
// equal to the size.
APInt BaseDelta = Size - OffsetDelta;
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
// Otherwise compute the distance with SCEV between the base pointers.
const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
Teach the SLP vectorizer the correct way to check for consecutive access using GEPs. Previously, it used a number of different heuristics for analyzing the GEPs. Several of these were conservatively correct, but failed to fall back to SCEV even when SCEV might have given a reasonable answer. One was simply incorrect in how it was formulated. There was good code already to recursively evaluate the constant offsets in GEPs, look through pointer casts, etc. I gathered this into a form code like the SLP code can use in a previous commit, which allows all of this code to become quite simple. There is some performance (compile time) concern here at first glance as we're directly attempting to walk both pointers constant GEP chains. However, a couple of thoughts: 1) The very common cases where there is a dynamic pointer, and a second pointer at a constant offset (usually a stride) from it, this code will actually not do any unnecessary work. 2) InstCombine and other passes work very hard to collapse constant GEPs, so it will be rare that we iterate here for a long time. That said, if there remain performance problems here, there are some obvious things that can improve the situation immensely. Doing a vectorizer-pass-wide memoizer for each individual layer of pointer values, their base values, and the constant offset is likely to be able to completely remove redundant work and strictly limit the scaling of the work to scrape these GEPs. Since this optimization was not done on the prior version (which would still benefit from it), I've not done it here. But if folks have benchmarks that slow down it should be straight forward for them to add. I've added a test case, but I'm not really confident of the amount of testing done for different access patterns, strides, and pointer manipulation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-22 12:45:17 +00:00
const SCEV *C = SE->getConstant(BaseDelta);
const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
return X == PtrSCEVB;
}
Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
assert(Src->getParent() == Dst->getParent() && "Not the same BB");
BasicBlock::iterator I = Src, E = Dst;
/// Scan all of the instruction from SRC to DST and check if
/// the source may alias.
for (++I; I != E; ++I) {
// Ignore store instructions that are marked as 'ignore'.
if (MemBarrierIgnoreList.count(I))
continue;
if (Src->mayWriteToMemory()) /* Write */ {
if (!I->mayReadOrWriteMemory())
continue;
} else /* Read */ {
if (!I->mayWriteToMemory())
continue;
}
AliasAnalysis::Location A = getLocation(&*I);
AliasAnalysis::Location B = getLocation(Src);
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
return I;
}
return nullptr;
}
int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
BlockNumbering &BN = BlocksNumbers[BB];
int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
for (unsigned i = 0, e = VL.size(); i < e; ++i)
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
return MaxIdx;
}
Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
BlockNumbering &BN = BlocksNumbers[BB];
int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
for (unsigned i = 1, e = VL.size(); i < e; ++i)
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
Instruction *I = BN.getInstruction(MaxIdx);
assert(I && "bad location");
return I;
}
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
Instruction *VL0 = cast<Instruction>(VL[0]);
Instruction *LastInst = getLastInstruction(VL);
BasicBlock::iterator NextInst = LastInst;
++NextInst;
Builder.SetInsertPoint(VL0->getParent(), NextInst);
Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
}
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
Value *Vec = UndefValue::get(Ty);
// Generate the 'InsertElement' instruction.
for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(Insrt);
CSEBlocks.insert(Insrt->getParent());
// Add to our 'need-to-extract' list.
if (ScalarToTreeEntry.count(VL[i])) {
int Idx = ScalarToTreeEntry[VL[i]];
TreeEntry *E = &VectorizableTree[Idx];
// Find which lane we need to extract.
int FoundLane = -1;
for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
// Is this the lane of the scalar that we are looking for ?
if (E->Scalars[Lane] == VL[i]) {
FoundLane = Lane;
break;
}
}
assert(FoundLane >= 0 && "Could not find the correct lane");
ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
}
}
}
return Vec;
}
Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
SmallDenseMap<Value*, int>::const_iterator Entry
= ScalarToTreeEntry.find(VL[0]);
if (Entry != ScalarToTreeEntry.end()) {
int Idx = Entry->second;
const TreeEntry *En = &VectorizableTree[Idx];
if (En->isSame(VL) && En->VectorizedValue)
return En->VectorizedValue;
}
return nullptr;
}
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
if (ScalarToTreeEntry.count(VL[0])) {
int Idx = ScalarToTreeEntry[VL[0]];
TreeEntry *E = &VectorizableTree[Idx];
if (E->isSame(VL))
return vectorizeTree(E);
}
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
return Gather(VL, VecTy);
}
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
IRBuilder<>::InsertPointGuard Guard(Builder);
if (E->VectorizedValue) {
DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
return E->VectorizedValue;
}
Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
Type *ScalarTy = VL0->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
if (E->NeedToGather) {
setInsertPointAfterBundle(E->Scalars);
return Gather(E->Scalars, VecTy);
}
unsigned Opcode = VL0->getOpcode();
assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
switch (Opcode) {
case Instruction::PHI: {
PHINode *PH = dyn_cast<PHINode>(VL0);
Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
E->VectorizedValue = NewPhi;
// PHINodes may have multiple entries from the same block. We want to
// visit every block once.
SmallSet<BasicBlock*, 4> VisitedBBs;
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
BasicBlock *IBB = PH->getIncomingBlock(i);
if (!VisitedBBs.insert(IBB)) {
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
continue;
}
// Prepare the operand vector.
for (unsigned j = 0; j < E->Scalars.size(); ++j)
Operands.push_back(cast<PHINode>(E->Scalars[j])->
getIncomingValueForBlock(IBB));
Builder.SetInsertPoint(IBB->getTerminator());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
Value *Vec = vectorizeTree(Operands);
NewPhi->addIncoming(Vec, IBB);
}
assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
"Invalid number of incoming values");
return NewPhi;
}
case Instruction::ExtractElement: {
if (CanReuseExtract(E->Scalars)) {
Value *V = VL0->getOperand(0);
E->VectorizedValue = V;
return V;
}
return Gather(E->Scalars, VecTy);
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
ValueList INVL;
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
setInsertPointAfterBundle(E->Scalars);
Value *InVec = vectorizeTree(INVL);
if (Value *V = alreadyVectorized(E->Scalars))
return V;
CastInst *CI = dyn_cast<CastInst>(VL0);
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
E->VectorizedValue = V;
return V;
}
case Instruction::FCmp:
case Instruction::ICmp: {
ValueList LHSV, RHSV;
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
}
setInsertPointAfterBundle(E->Scalars);
Value *L = vectorizeTree(LHSV);
Value *R = vectorizeTree(RHSV);
if (Value *V = alreadyVectorized(E->Scalars))
return V;
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
Value *V;
if (Opcode == Instruction::FCmp)
V = Builder.CreateFCmp(P0, L, R);
else
V = Builder.CreateICmp(P0, L, R);
E->VectorizedValue = V;
return V;
}
case Instruction::Select: {
ValueList TrueVec, FalseVec, CondVec;
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
}
setInsertPointAfterBundle(E->Scalars);
Value *Cond = vectorizeTree(CondVec);
Value *True = vectorizeTree(TrueVec);
Value *False = vectorizeTree(FalseVec);
if (Value *V = alreadyVectorized(E->Scalars))
return V;
Value *V = Builder.CreateSelect(Cond, True, False);
E->VectorizedValue = V;
return V;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
ValueList LHSVL, RHSVL;
if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
else
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
}
setInsertPointAfterBundle(E->Scalars);
Value *LHS = vectorizeTree(LHSVL);
Value *RHS = vectorizeTree(RHSVL);
if (LHS == RHS && isa<Instruction>(LHS)) {
assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
}
if (Value *V = alreadyVectorized(E->Scalars))
return V;
BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
E->VectorizedValue = V;
if (Instruction *I = dyn_cast<Instruction>(V))
return propagateMetadata(I, E->Scalars);
return V;
}
case Instruction::Load: {
// Loads are inserted at the head of the tree because we don't want to
// sink them all the way down past store instructions.
setInsertPointAfterBundle(E->Scalars);
LoadInst *LI = cast<LoadInst>(VL0);
unsigned AS = LI->getPointerAddressSpace();
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
VecTy->getPointerTo(AS));
unsigned Alignment = LI->getAlignment();
LI = Builder.CreateLoad(VecPtr);
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
return propagateMetadata(LI, E->Scalars);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(VL0);
unsigned Alignment = SI->getAlignment();
unsigned AS = SI->getPointerAddressSpace();
ValueList ValueOp;
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
setInsertPointAfterBundle(E->Scalars);
Value *VecValue = vectorizeTree(ValueOp);
Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
VecTy->getPointerTo(AS));
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
S->setAlignment(Alignment);
E->VectorizedValue = S;
return propagateMetadata(S, E->Scalars);
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
setInsertPointAfterBundle(E->Scalars);
std::vector<Value *> OpVecs;
for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
ValueList OpVL;
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
CallInst *CEI = cast<CallInst>(E->Scalars[i]);
OpVL.push_back(CEI->getArgOperand(j));
}
Value *OpVec = vectorizeTree(OpVL);
DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
OpVecs.push_back(OpVec);
}
Module *M = F->getParent();
IntrinsicInst *II = cast<IntrinsicInst>(CI);
Intrinsic::ID ID = II->getIntrinsicID();
Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
Value *V = Builder.CreateCall(CF, OpVecs);
E->VectorizedValue = V;
return V;
}
default:
llvm_unreachable("unknown inst");
}
return nullptr;
}
Value *BoUpSLP::vectorizeTree() {
Builder.SetInsertPoint(F->getEntryBlock().begin());
vectorizeTree(&VectorizableTree[0]);
DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
// Extract all of the elements with the external uses.
for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
it != e; ++it) {
Value *Scalar = it->Scalar;
llvm::User *User = it->User;
// Skip users that we already RAUW. This happens when one instruction
// has multiple uses of the same value.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
Scalar->user_end())
continue;
assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
int Idx = ScalarToTreeEntry[Scalar];
TreeEntry *E = &VectorizableTree[Idx];
assert(!E->NeedToGather && "Extracting from a gather list");
Value *Vec = E->VectorizedValue;
assert(Vec && "Can't find vectorizable value");
Value *Lane = Builder.getInt32(it->Lane);
// Generate extracts for out-of-tree users.
// Find the insertion point for the extractelement lane.
if (isa<Instruction>(Vec)){
if (PHINode *PH = dyn_cast<PHINode>(User)) {
for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
if (PH->getIncomingValue(i) == Scalar) {
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
CSEBlocks.insert(PH->getIncomingBlock(i));
PH->setOperand(i, Ex);
}
}
} else {
Builder.SetInsertPoint(cast<Instruction>(User));
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
CSEBlocks.insert(cast<Instruction>(User)->getParent());
User->replaceUsesOfWith(Scalar, Ex);
}
} else {
Builder.SetInsertPoint(F->getEntryBlock().begin());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
CSEBlocks.insert(&F->getEntryBlock());
User->replaceUsesOfWith(Scalar, Ex);
}
DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
}
// For each vectorized value:
for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
TreeEntry *Entry = &VectorizableTree[EIdx];
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
// No need to handle users of gathered values.
if (Entry->NeedToGather)
continue;
assert(Entry->VectorizedValue && "Can't find vectorizable value");
Type *Ty = Scalar->getType();
if (!Ty->isVoidTy()) {
#ifndef NDEBUG
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
for (User *U : Scalar->users()) {
DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
assert((ScalarToTreeEntry.count(U) ||
// It is legal to replace the reduction users by undef.
(RdxOps && RdxOps->count(U))) &&
"Replacing out-of-tree value with undef");
}
#endif
Value *Undef = UndefValue::get(Ty);
Scalar->replaceAllUsesWith(Undef);
}
DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
cast<Instruction>(Scalar)->eraseFromParent();
}
}
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
BlocksNumbers[it].forget();
}
Builder.ClearInsertionPoint();
return VectorizableTree[0].VectorizedValue;
}
void BoUpSLP::optimizeGatherSequence() {
DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
<< " gather sequences instructions.\n");
// LICM InsertElementInst sequences.
for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
e = GatherSeq.end(); it != e; ++it) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
if (!Insert)
continue;
// Check if this block is inside a loop.
Loop *L = LI->getLoopFor(Insert->getParent());
if (!L)
continue;
// Check if it has a preheader.
BasicBlock *PreHeader = L->getLoopPreheader();
if (!PreHeader)
continue;
// If the vector or the element that we insert into it are
// instructions that are defined in this basic block then we can't
// hoist this instruction.
Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
if (CurrVec && L->contains(CurrVec))
continue;
if (NewElem && L->contains(NewElem))
continue;
// We can hoist this instruction. Move it to the pre-header.
Insert->moveBefore(PreHeader->getTerminator());
}
// Sort blocks by domination. This ensures we visit a block after all blocks
// dominating it are visited.
SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
[this](const BasicBlock *A, const BasicBlock *B) {
return DT->properlyDominates(A, B);
});
// Perform O(N^2) search over the gather sequences and merge identical
// instructions. TODO: We can further optimize this scan if we split the
// instructions into different buckets based on the insert lane.
SmallVector<Instruction *, 16> Visited;
for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
E = CSEWorkList.end();
I != E; ++I) {
assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
"Worklist not sorted properly!");
BasicBlock *BB = *I;
// For all instructions in blocks containing gather sequences:
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
Instruction *In = it++;
if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
ve = Visited.end();
v != ve; ++v) {
if (In->isIdenticalTo(*v) &&
DT->dominates((*v)->getParent(), In->getParent())) {
In->replaceAllUsesWith(*v);
In->eraseFromParent();
In = nullptr;
break;
}
}
if (In) {
assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
Visited.push_back(In);
}
}
}
CSEBlocks.clear();
GatherSeq.clear();
}
/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
typedef SmallVector<StoreInst *, 8> StoreList;
typedef MapVector<Value *, StoreList> StoreListMap;
/// Pass identification, replacement for typeid
static char ID;
explicit SLPVectorizer() : FunctionPass(ID) {
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
}
ScalarEvolution *SE;
const DataLayout *DL;
TargetTransformInfo *TTI;
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
bool runOnFunction(Function &F) override {
if (skipOptnoneFunction(F))
return false;
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TTI = &getAnalysis<TargetTransformInfo>();
AA = &getAnalysis<AliasAnalysis>();
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
StoreRefs.clear();
bool Changed = false;
// If the target claims to have no vector registers don't attempt
// vectorization.
if (!TTI->getNumberOfRegisters(true))
return false;
// Must have DataLayout. We can't require it because some tests run w/o
// triple.
if (!DL)
return false;
// Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
// Use the bottom up slp vectorizer to construct chains that start with
// he store instructions.
BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
// Scan the blocks in the function in post order.
for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
e = po_end(&F.getEntryBlock()); it != e; ++it) {
BasicBlock *BB = *it;
// Vectorize trees that end at stores.
if (unsigned count = collectStores(BB, R)) {
(void)count;
DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
Changed |= vectorizeStoreChains(R);
}
// Vectorize trees that end at reductions.
Changed |= vectorizeChainsInBlock(BB, R);
}
if (Changed) {
R.optimizeGatherSequence();
DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
DEBUG(verifyFunction(F));
}
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<ScalarEvolution>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetTransformInfo>();
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
private:
/// \brief Collect memory references and sort them according to their base
/// object. We sort the stores to their base objects to reduce the cost of the
/// quadratic search on the stores. TODO: We can further reduce this cost
/// if we flush the chain creation every time we run into a memory barrier.
unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
/// \brief Try to vectorize a chain that starts at two arithmetic instrs.
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a list of operands.
/// \returns true if a value was vectorized.
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
/// \brief Vectorize the stores that were collected in StoreRefs.
bool vectorizeStoreChains(BoUpSLP &R);
/// \brief Scan the basic block and look for patterns that are likely to start
/// a vectorization chain.
bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
BoUpSLP &R);
bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
BoUpSLP &R);
private:
StoreListMap StoreRefs;
};
/// \brief Check that the Values in the slice in VL array are still existent in
/// the WeakVH array.
/// Vectorization of part of the VL array may cause later values in the VL array
/// to become invalid. We track when this has happened in the WeakVH array.
static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
SmallVectorImpl<WeakVH> &VH,
unsigned SliceBegin,
unsigned SliceSize) {
for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
if (VH[i] != VL[i])
return true;
return false;
}
bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
int CostThreshold, BoUpSLP &R) {
unsigned ChainLen = Chain.size();
DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
<< "\n");
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
unsigned Sz = DL->getTypeSizeInBits(StoreTy);
unsigned VF = MinVecRegSize / Sz;
if (!isPowerOf2_32(Sz) || VF < 2)
return false;
// Keep track of values that were deleted by vectorizing in the loop below.
SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
bool Changed = false;
// Look for profitable vectorizable trees at all offsets, starting at zero.
for (unsigned i = 0, e = ChainLen; i < e; ++i) {
if (i + VF > e)
break;
// Check that a previous iteration of this loop did not delete the Value.
if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
continue;
DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
<< "\n");
ArrayRef<Value *> Operands = Chain.slice(i, VF);
R.buildTree(Operands);
int Cost = R.getTreeCost();
DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
if (Cost < CostThreshold) {
DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
R.vectorizeTree();
// Move to the next bundle.
i += VF - 1;
Changed = true;
}
}
return Changed;
}
bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
int costThreshold, BoUpSLP &R) {
SetVector<Value *> Heads, Tails;
SmallDenseMap<Value *, Value *> ConsecutiveChain;
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we vectorized so that we don't visit the same store twice.
BoUpSLP::ValueSet VectorizedStores;
bool Changed = false;
// Do a quadratic search on all of the given stores and find
// all of the pairs of stores that follow each other.
for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
for (unsigned j = 0; j < e; ++j) {
if (i == j)
continue;
if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
Tails.insert(Stores[j]);
Heads.insert(Stores[i]);
ConsecutiveChain[Stores[i]] = Stores[j];
}
}
}
// For stores that start but don't end a link in the chain:
for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
it != e; ++it) {
if (Tails.count(*it))
continue;
// We found a store instr that starts a chain. Now follow the chain and try
// to vectorize it.
BoUpSLP::ValueList Operands;
Value *I = *it;
// Collect the chain into a list.
while (Tails.count(I) || Heads.count(I)) {
if (VectorizedStores.count(I))
break;
Operands.push_back(I);
// Move to the next value in the chain.
I = ConsecutiveChain[I];
}
bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
// Mark the vectorized stores so that we don't vectorize them again.
if (Vectorized)
VectorizedStores.insert(Operands.begin(), Operands.end());
Changed |= Vectorized;
}
return Changed;
}
unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
unsigned count = 0;
StoreRefs.clear();
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
StoreInst *SI = dyn_cast<StoreInst>(it);
if (!SI)
continue;
// Don't touch volatile stores.
if (!SI->isSimple())
continue;
// Check that the pointer points to scalars.
Type *Ty = SI->getValueOperand()->getType();
if (Ty->isAggregateType() || Ty->isVectorTy())
continue;
// Find the base pointer.
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
// Save the store locations.
StoreRefs[Ptr].push_back(SI);
count++;
}
return count;
}
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B)
return false;
Value *VL[] = { A, B };
return tryToVectorizeList(VL, R);
}
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
if (VL.size() < 2)
return false;
DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
// Check that all of the parts are scalar instructions of the same type.
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
return false;
unsigned Opcode0 = I0->getOpcode();
Type *Ty0 = I0->getType();
unsigned Sz = DL->getTypeSizeInBits(Ty0);
unsigned VF = MinVecRegSize / Sz;
for (int i = 0, e = VL.size(); i < e; ++i) {
Type *Ty = VL[i]->getType();
if (Ty->isAggregateType() || Ty->isVectorTy())
return false;
Instruction *Inst = dyn_cast<Instruction>(VL[i]);
if (!Inst || Inst->getOpcode() != Opcode0)
return false;
}
bool Changed = false;
// Keep track of values that were deleted by vectorizing in the loop below.
SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
unsigned OpsWidth = 0;
if (i + VF > e)
OpsWidth = e - i;
else
OpsWidth = VF;
if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
break;
// Check that a previous iteration of this loop did not delete the Value.
if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
continue;
DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
<< "\n");
ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
R.buildTree(Ops);
int Cost = R.getTreeCost();
if (Cost < -SLPCostThreshold) {
DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
R.vectorizeTree();
// Move to the next bundle.
i += VF - 1;
Changed = true;
}
}
return Changed;
}
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
if (!V)
return false;
// Try to vectorize V.
if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
return true;
BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
// Try to skip B.
if (B && B->hasOneUse()) {
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (tryToVectorizePair(A, B0, R)) {
B->moveBefore(V);
return true;
}
if (tryToVectorizePair(A, B1, R)) {
B->moveBefore(V);
return true;
}
}
// Try to skip A.
if (A && A->hasOneUse()) {
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (tryToVectorizePair(A0, B, R)) {
A->moveBefore(V);
return true;
}
if (tryToVectorizePair(A1, B, R)) {
A->moveBefore(V);
return true;
}
}
return 0;
}
/// \brief Generate a shuffle mask to be used in a reduction tree.
///
/// \param VecLen The length of the vector to be reduced.
/// \param NumEltsToRdx The number of elements that should be reduced in the
/// vector.
/// \param IsPairwise Whether the reduction is a pairwise or splitting
/// reduction. A pairwise reduction will generate a mask of
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
bool IsPairwise, bool IsLeft,
IRBuilder<> &Builder) {
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
SmallVector<Constant *, 32> ShuffleMask(
VecLen, UndefValue::get(Builder.getInt32Ty()));
if (IsPairwise)
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
else
// Move the upper half of the vector to the lower half.
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
return ConstantVector::get(ShuffleMask);
}
/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction operations (currently add and
/// fadd) that has operations that can be put into a vector as its leaf.
/// For example, this tree:
///
/// mul mul mul mul
/// \ / \ /
/// + +
/// \ /
/// +
/// This tree has "mul" as its reduced values and "+" as its reduction
/// operations. A reduction might be feeding into a store or a binary operation
/// feeding a phi.
/// ...
/// \ /
/// +
/// |
/// phi +=
///
/// Or:
/// ...
/// \ /
/// +
/// |
/// *p =
///
class HorizontalReduction {
SmallPtrSet<Value *, 16> ReductionOps;
SmallVector<Value *, 32> ReducedVals;
BinaryOperator *ReductionRoot;
PHINode *ReductionPHI;
/// The opcode of the reduction.
unsigned ReductionOpcode;
/// The opcode of the values we perform a reduction on.
unsigned ReducedValueOpcode;
/// The width of one full horizontal reduction operation.
unsigned ReduxWidth;
/// Should we model this reduction as a pairwise reduction tree or a tree that
/// splits the vector in halves and adds those halves.
bool IsPairwiseReduction;
public:
HorizontalReduction()
: ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
/// \brief Try to find a reduction tree.
bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
const DataLayout *DL) {
assert((!Phi ||
std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
"Thi phi needs to use the binary operator");
// We could have a initial reductions that is not an add.
// r *= v1 + v2 + v3 + v4
// In such a case start looking for a tree rooted in the first '+'.
if (Phi) {
if (B->getOperand(0) == Phi) {
Phi = nullptr;
B = dyn_cast<BinaryOperator>(B->getOperand(1));
} else if (B->getOperand(1) == Phi) {
Phi = nullptr;
B = dyn_cast<BinaryOperator>(B->getOperand(0));
}
}
if (!B)
return false;
Type *Ty = B->getType();
if (Ty->isVectorTy())
return false;
ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0;
ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
ReductionRoot = B;
ReductionPHI = Phi;
if (ReduxWidth < 4)
return false;
// We currently only support adds.
if (ReductionOpcode != Instruction::Add &&
ReductionOpcode != Instruction::FAdd)
return false;
// Post order traverse the reduction tree starting at B. We only handle true
// trees containing only binary operators.
SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
Stack.push_back(std::make_pair(B, 0));
while (!Stack.empty()) {
BinaryOperator *TreeN = Stack.back().first;
unsigned EdgeToVist = Stack.back().second++;
bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
// Only handle trees in the current basic block.
if (TreeN->getParent() != B->getParent())
return false;
// Each tree node needs to have one user except for the ultimate
// reduction.
if (!TreeN->hasOneUse() && TreeN != B)
return false;
// Postorder vist.
if (EdgeToVist == 2 || IsReducedValue) {
if (IsReducedValue) {
// Make sure that the opcodes of the operations that we are going to
// reduce match.
if (!ReducedValueOpcode)
ReducedValueOpcode = TreeN->getOpcode();
else if (ReducedValueOpcode != TreeN->getOpcode())
return false;
ReducedVals.push_back(TreeN);
} else {
// We need to be able to reassociate the adds.
if (!TreeN->isAssociative())
return false;
ReductionOps.insert(TreeN);
}
// Retract.
Stack.pop_back();
continue;
}
// Visit left or right.
Value *NextV = TreeN->getOperand(EdgeToVist);
BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
if (Next)
Stack.push_back(std::make_pair(Next, 0));
else if (NextV != Phi)
return false;
}
return true;
}
/// \brief Attempt to vectorize the tree found by
/// matchAssociativeReduction.
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
if (ReducedVals.empty())
return false;
unsigned NumReducedVals = ReducedVals.size();
if (NumReducedVals < ReduxWidth)
return false;
Value *VectorizedTree = nullptr;
IRBuilder<> Builder(ReductionRoot);
FastMathFlags Unsafe;
Unsafe.setUnsafeAlgebra();
Builder.SetFastMathFlags(Unsafe);
unsigned i = 0;
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
V.buildTree(ValsToReduce, &ReductionOps);
// Estimate cost.
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
if (Cost >= -SLPCostThreshold)
break;
DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
<< ". (HorRdx)\n");
// Vectorize a tree.
DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
Value *VectorizedRoot = V.vectorizeTree();
// Emit a reduction.
Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
if (VectorizedTree) {
Builder.SetCurrentDebugLocation(Loc);
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
ReducedSubTree, "bin.rdx");
} else
VectorizedTree = ReducedSubTree;
}
if (VectorizedTree) {
// Finish the reduction.
for (; i < NumReducedVals; ++i) {
Builder.SetCurrentDebugLocation(
cast<Instruction>(ReducedVals[i])->getDebugLoc());
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
ReducedVals[i]);
}
// Update users.
if (ReductionPHI) {
assert(ReductionRoot && "Need a reduction operation");
ReductionRoot->setOperand(0, VectorizedTree);
ReductionRoot->setOperand(1, ReductionPHI);
} else
ReductionRoot->replaceAllUsesWith(VectorizedTree);
}
return VectorizedTree != nullptr;
}
private:
/// \brief Calcuate the cost of a reduction.
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
Type *ScalarTy = FirstReducedVal->getType();
Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
int ScalarReduxCost =
ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
<< " for reduction that starts with " << *FirstReducedVal
<< " (It is a "
<< (IsPairwiseReduction ? "pairwise" : "splitting")
<< " reduction)\n");
return VecReduxCost - ScalarReduxCost;
}
static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
Value *R, const Twine &Name = "") {
if (Opcode == Instruction::FAdd)
return Builder.CreateFAdd(L, R, Name);
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
}
/// \brief Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
assert(VectorizedValue && "Need to have a vectorized tree node");
Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
Value *TmpVec = ValToReduce;
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
if (IsPairwiseReduction) {
Value *LeftMask =
createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
Value *RightMask =
createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
Value *LeftShuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
Value *RightShuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
"rdx.shuf.r");
TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
"bin.rdx");
} else {
Value *UpperHalf =
createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
Value *Shuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
}
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
};
/// \brief Recognize construction of vectors like
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
///
/// Returns true if it matches
///
static bool findBuildVector(InsertElementInst *IE,
SmallVectorImpl<Value *> &Ops) {
if (!isa<UndefValue>(IE->getOperand(0)))
return false;
while (true) {
Ops.push_back(IE->getOperand(1));
if (IE->use_empty())
return false;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
if (!NextUse)
return true;
// If this isn't the final use, make sure the next insertelement is the only
// use. It's OK if the final constructed vector is used multiple times
if (!IE->hasOneUse())
return false;
IE = NextUse;
}
return false;
}
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
return V->getType() < V2->getType();
}
bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
SmallVector<Value *, 4> Incoming;
SmallSet<Value *, 16> VisitedInstrs;
bool HaveVectorizedPhiNodes = true;
while (HaveVectorizedPhiNodes) {
HaveVectorizedPhiNodes = false;
// Collect the incoming values from the PHIs.
Incoming.clear();
for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
++instr) {
PHINode *P = dyn_cast<PHINode>(instr);
if (!P)
break;
if (!VisitedInstrs.count(P))
Incoming.push_back(P);
}
// Sort by type.
std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
// Try to vectorize elements base on their type.
for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
E = Incoming.end();
IncIt != E;) {
// Look for the next elements with the same type.
SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
while (SameTypeIt != E &&
(*SameTypeIt)->getType() == (*IncIt)->getType()) {
VisitedInstrs.insert(*SameTypeIt);
++SameTypeIt;
}
// Try to vectorize them.
unsigned NumElts = (SameTypeIt - IncIt);
DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
if (NumElts > 1 &&
tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
// Success start over because instructions might have been changed.
HaveVectorizedPhiNodes = true;
Changed = true;
break;
}
// Start over at the next instruction of a different type (or the end).
IncIt = SameTypeIt;
}
}
VisitedInstrs.clear();
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
// We may go through BB multiple times so skip the one we have checked.
if (!VisitedInstrs.insert(it))
continue;
if (isa<DbgInfoIntrinsic>(it))
continue;
// Try to vectorize reductions that use PHINodes.
if (PHINode *P = dyn_cast<PHINode>(it)) {
// Check that the PHI is a reduction PHI.
if (P->getNumIncomingValues() != 2)
return Changed;
Value *Rdx =
(P->getIncomingBlock(0) == BB
? (P->getIncomingValue(0))
: (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
: nullptr));
// Check if this is a Binary Operator.
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
if (!BI)
continue;
// Try to match and vectorize a horizontal reduction.
HorizontalReduction HorRdx;
if (ShouldVectorizeHor &&
HorRdx.matchAssociativeReduction(P, BI, DL) &&
HorRdx.tryToReduce(R, TTI)) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
Value *Inst = BI->getOperand(0);
if (Inst == P)
Inst = BI->getOperand(1);
if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
continue;
}
// Try to vectorize horizontal reductions feeding into a store.
if (ShouldStartVectorizeHorAtStore)
if (StoreInst *SI = dyn_cast<StoreInst>(it))
if (BinaryOperator *BinOp =
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
HorizontalReduction HorRdx;
if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
HorRdx.tryToReduce(R, TTI)) ||
tryToVectorize(BinOp, R))) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
}
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
Changed = true;
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
it = BB->begin();
e = BB->end();
continue;
}
for (int i = 0; i < 2; ++i) {
if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
Changed = true;
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
it = BB->begin();
e = BB->end();
}
}
}
continue;
}
// Try to vectorize trees that start at insertelement instructions.
if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
SmallVector<Value *, 8> Ops;
if (!findBuildVector(IE, Ops))
continue;
if (tryToVectorizeList(Ops, R)) {
Changed = true;
it = BB->begin();
e = BB->end();
}
continue;
}
}
return Changed;
}
bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Attempt to sort and vectorize each of the store-groups.
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
it != e; ++it) {
if (it->second.size() < 2)
continue;
DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n");
// Process the stores in chunks of 16.
for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
unsigned Len = std::min<unsigned>(CE - CI, 16);
ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
}
}
return Changed;
}
} // end anonymous namespace
char SLPVectorizer::ID = 0;
static const char lv_name[] = "SLP Vectorizer";
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
namespace llvm {
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
}