Summary:
The register bank is now entirely initialized in the constructor. However,
we still have the hardcoded number of register classes which will be
dealt with in the TableGen patch (D27338) since we do not have access
to this information to resolve this at this stage. The number of register
classes is known to the TRI and to TableGen but the RegisterBank
constructor is too early for the former and too late for the latter.
This will be fixed when the data is tablegen-erated.
Reviewers: t.p.northover, ab, rovka, qcolombet
Subscribers: aditya_nandakumar, kristof.beyls, vkalintiris, llvm-commits, dberris
Differential Revision: https://reviews.llvm.org/D27809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291770 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Refactor the RegisterBank initialization to use static data. This requires
GlobalISel implementations to rewrite calls to createRegisterBank() and
addRegBankCoverage() into a call to setRegBankData().
Out of tree targets can use diff 4 of D27807
(https://reviews.llvm.org/D27807?id=84117) to have addRegBankCoverage() dump
the register classes and other data that needs to be provided to
setRegBankData(). This is the method that was used to generate the static data
in this patch.
Tablegen-eration of this static data will follow after some refactoring.
Reviewers: t.p.northover, ab, rovka, qcolombet
Subscribers: aditya_nandakumar, kristof.beyls, vkalintiris, llvm-commits, dberris
Differential Revision: https://reviews.llvm.org/D27807
Differential Revision: https://reviews.llvm.org/D27808
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291768 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Memory Dependence Analysis was limited to return only local dependencies
for invariant.group handling. Now it returns NonLocal when it finds it
and then by asking getNonLocalPointerDependency we get found dep.
Thanks to this we are able to devirtualize loops!
void indirect(A &a, int n) {
for (int i = 0 ; i < n; i++)
a.foo();
}
void test(int n) {
A a;
indirect(a);
}
After inlining a.foo() will be changed to direct call, even if foo and A::A()
is external (but only if vtable definition is be available).
Reviewers: nlewycky, dberlin, chandlerc, rsmith
Subscribers: mehdi_amini, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D28137
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291762 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the third of a multi-part change to implement subcommands for
the `llvm-xray` tool.
Here we define the `account` subcommand which does simple function call
accounting, generating basic statistics on function calls we find in an
XRay log/trace. We support text output and csv output for this
subcommand.
This change also supports sorting, summing, and filtering the top N
results.
Part of this tool will later be turned into a library that could be used
for basic function call accounting.
Depends on D24376.
Reviewers: dblaikie, echristo
Subscribers: mehdi_amini, dberris, beanz, llvm-commits
Differential Revision: https://reviews.llvm.org/D24377
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291749 91177308-0d34-0410-b5e6-96231b3b80d8
r289653 added a case where `vselect <cond> <vector1> <all-zeros>`
is transformed to:
`vselect xor(cond, DAG.getConstant(1, DL, CondVT) <all-zeros> <vector1>`
This was not aimed to catch cases where Cond is not a vXi1
mask but it does. Moreover, when Cond type is VxiN (N > 1)
then xor(cond, DAG.getConstant(1, DL, CondVT) != NOT(cond).
This patch changes the above to xor with allones, and avoids
entering the case for non-mask Conds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291745 91177308-0d34-0410-b5e6-96231b3b80d8
We're definitely doing bad things when avx512vl is enabled without avx512dq. It looks like avx512vl/dq without avx512bw may also have some issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291744 91177308-0d34-0410-b5e6-96231b3b80d8
This test seems to have largely been relying on asserts being tripped.
It had a very specific and somewhat uninteresting grep of the output,
but it never really did anything to cause SCEV to be preserved across
loop simplify, certainly not explicitly. And a later addition to it
actually added CHECK lines despite the test never running FileCheck.
Now we actually print SCEV before and after loop simplify to make sure
it is *changing* and being *updated*. Which seems to be much more likely
the point of the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291740 91177308-0d34-0410-b5e6-96231b3b80d8
It was always zero. When we move a store from `initial` to its
own congruency class, we end up with a negative store count, which
is obviously wrong.
Also, while here, change StoreCount to be signed so that the assertions
actually fire.
Ack'ed by Daniel Berlin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291725 91177308-0d34-0410-b5e6-96231b3b80d8
Previously the type dumper itself was passed around to a lot of different
places and manipulated in ways that were more appropriate on the type
database. For example, the entire TypeDumper was passed into the symbol
dumper, when all the symbol dumper wanted to do was lookup the name of a
TypeIndex so it could print it. That's what the TypeDatabase is for --
mapping type indices to names.
Another example is how if the user runs llvm-pdbdump with the option to
dump symbols but not types, we still have to visit all types so that we
can print minimal information about the type of a symbol, but just without
dumping full symbol records. The way we did this before is by hacking it
up so that we run everything through the type dumper with a null printer,
so that the output goes to /dev/null. But really, we don't need to dump
anything, all we want to do is build the type database. Since
TypeDatabaseVisitor now exists independently of TypeDumper, we can do
this. We just build a custom visitor callback pipeline that includes a
database visitor but not a dumper.
All the hackery around printers etc goes away. After this patch, we could
probably even delete the entire CVTypeDumper class since really all it is
at this point is a thin wrapper that hides the details of how to build a
useful visitation pipeline. It's not a priority though, so CVTypeDumper
remains for now.
After this patch we will be able to easily plug in a different style of
type dumper by only implementing the proper visitation methods to dump
one-line output and then sticking it on the pipeline.
Differential Revision: https://reviews.llvm.org/D28524
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291724 91177308-0d34-0410-b5e6-96231b3b80d8
This produces worse code when i16 is legal, mostly
due to combines getting confused by conversions inserted
for uniform 16-bit operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291717 91177308-0d34-0410-b5e6-96231b3b80d8
This was shrinking the instruction even though the carry output
register was a virtual register, not known VCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291716 91177308-0d34-0410-b5e6-96231b3b80d8
When using profiling and ASan together (-fprofile-instr-generate -fcoverage-mapping -fsanitize=address), at least on Darwin, the section of globals that ASan emits (__asan_globals) is misaligned and starts at an odd offset. This really doesn't have anything to do with profiling, but it triggers the issue because profiling emits a string section, which can have arbitrary size. This patch changes the alignment to sizeof(GlobalStruct).
Differential Revision: https://reviews.llvm.org/D28573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291715 91177308-0d34-0410-b5e6-96231b3b80d8
classes, and updating checking to allow for equivalence through
reachability.
(Sadly, the checking here is not perfect, and can't be made perfect,
so we'll have to disable it after we are satisfied with correctness.
Right now it is just "very unlikely" to happen.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291698 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded.
This needs a simple probability check because there are some cases where it is
not profitable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291695 91177308-0d34-0410-b5e6-96231b3b80d8
There are a couple left in bool-like containers (BitVector, etc) where
the implicit conversions seem more suitable - though it might be worth
considering explicitifying those too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291694 91177308-0d34-0410-b5e6-96231b3b80d8
The removed assert seems bogus - it's perfectly legal for the roots of the
vectorized subtrees to be equal even if the original scalar values aren't,
if the original scalars happen to be equivalent.
This fixes PR31599.
Differential Revision: https://reviews.llvm.org/D28539
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291692 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Revert LowerTypeTests: Split the pass in two: a resolution phase and a lowering phase.
This change separates how type identifiers are resolved from how intrinsic
calls are lowered. All information required to lower an intrinsic call
is stored in a new TypeIdLowering data structure. The idea is that this
data structure can either be initialized using the module itself during
regular LTO, or using the module summary in ThinLTO backends.
Original URL: https://reviews.llvm.org/D28341
Reviewers: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D28532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291684 91177308-0d34-0410-b5e6-96231b3b80d8