Commit Graph

30 Commits

Author SHA1 Message Date
Matthew Simpson
09e9ded8a1 [LoopUtils, LV] Fix PR27246 (first-order recurrences)
This patch ensures that when we detect first-order recurrences, we reject a phi
node if its previous value is also a phi node. During vectorization the initial
and previous values of the recurrence are shuffled together to create the value
for the current iteration. However, phi nodes are not widened like other
instructions. This fixes PR27246.

Differential Revision: http://reviews.llvm.org/D18971

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265983 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-11 19:48:18 +00:00
Silviu Baranga
d8cc816f81 Re-commit [SCEV] Introduce a guarded backedge taken count and use it in LAA and LV
This re-commits r265535 which was reverted in r265541 because it
broke the windows bots. The problem was that we had a PointerIntPair
which took a pointer to a struct allocated with new. The problem
was that new doesn't provide sufficient alignment guarantees.
This pattern was already present before r265535 and it just happened
to work. To fix this, we now separate the PointerToIntPair from the
ExitNotTakenInfo struct into a pointer and a bool.

Original commit message:

Summary:
When the backedge taken codition is computed from an icmp, SCEV can
deduce the backedge taken count only if one of the sides of the icmp
is an AddRecExpr. However, due to sign/zero extensions, we sometimes
end up with something that is not an AddRecExpr.

However, we can use SCEV predicates to produce a 'guarded' expression.
This change adds a method to SCEV to get this expression, and the
SCEV predicate associated with it.

In HowManyGreaterThans and HowManyLessThans we will now add a SCEV
predicate associated with the guarded backedge taken count when the
analyzed SCEV expression is not an AddRecExpr. Note that we only do
this as an alternative to returning a 'CouldNotCompute'.

We use new feature in Loop Access Analysis and LoopVectorize to analyze
and transform more loops.

Reviewers: anemet, mzolotukhin, hfinkel, sanjoy

Subscribers: flyingforyou, mcrosier, atrick, mssimpso, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17201



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265786 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-08 14:29:09 +00:00
Silviu Baranga
89e8236bfb Revert r265535 until we know how we can fix the bots
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265541 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-06 14:06:32 +00:00
Silviu Baranga
39fbde60e1 [SCEV] Introduce a guarded backedge taken count and use it in LAA and LV
Summary:
When the backedge taken codition is computed from an icmp, SCEV can
deduce the backedge taken count only if one of the sides of the icmp
is an AddRecExpr. However, due to sign/zero extensions, we sometimes
end up with something that is not an AddRecExpr.

However, we can use SCEV predicates to produce a 'guarded' expression.
This change adds a method to SCEV to get this expression, and the
SCEV predicate associated with it.

In HowManyGreaterThans and HowManyLessThans we will now add a SCEV
predicate associated with the guarded backedge taken count when the
analyzed SCEV expression is not an AddRecExpr. Note that we only do
this as an alternative to returning a 'CouldNotCompute'.

We use new feature in Loop Access Analysis and LoopVectorize to analyze
and transform more loops.

Reviewers: anemet, mzolotukhin, hfinkel, sanjoy

Subscribers: flyingforyou, mcrosier, atrick, mssimpso, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17201

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265535 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-06 13:18:26 +00:00
James Molloy
cd309008e2 [VectorUtils] Don't try and truncate PHIs to a smaller bitwidth
We already try not to truncate PHIs in computeMinimalBitwidths. LoopVectorize can't handle it and we really don't need to, because both induction and reduction PHIs are truncated by other means.

However, we weren't bailing out in all the places we should have, and we ended up by returning a PHI to be truncated, which has caused PR27018.

This fixes PR17018.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264852 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-30 10:11:43 +00:00
Matthew Simpson
72b5335cac [LoopUtils, LV] Fix PR26734
The vectorization of first-order recurrences (r261346) caused PR26734. When
detecting these recurrences, we need to ensure that the previous value is
actually defined inside the loop. This patch includes the fix and test case.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262624 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-03 16:12:01 +00:00
Matthew Simpson
3dd74513a8 [LV] Vectorize first-order recurrences
This patch enables the vectorization of first-order recurrences. A first-order
recurrence is a non-reduction recurrence relation in which the value of the
recurrence in the current loop iteration equals a value defined in the previous
iteration. The load PRE of the GVN pass often creates these recurrences by
hoisting loads from within loops.

In this patch, we add a new recurrence kind for first-order phi nodes and
attempt to vectorize them if possible. Vectorization is performed by shuffling
the values for the current and previous iterations. The vectorization cost
estimate is updated to account for the added shuffle instruction.

Contributed-by: Matthew Simpson and Chad Rosier <mcrosier@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16197

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261346 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-19 17:56:08 +00:00
Silviu Baranga
23340531a1 [LV] Add support for insertelt/extractelt processing during type truncation
Summary:
While shrinking types according to the required bits, we can
encounter insert/extract element instructions. This will cause us to
reach an llvm_unreachable statement.

This change adds support for truncating insert/extract element
operations, and adds a regression test.

Reviewers: jmolloy

Subscribers: mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17078

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260893 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-15 15:38:17 +00:00
James Molloy
c48890e194 [DemandedBits] Revert r249687 due to PR26071
This regresses a test in LoopVectorize, so I'll need to go away and think about how to solve this in a way that isn't broken.

From the writeup in PR26071:

What's happening is that ComputeKnownZeroes is telling us that all bits except the LSB are zero. We're then deciding that only the LSB needs to be demanded from the icmp's inputs.

This is where we're wrong - we're assuming that after simplification the bits that were known zero will continue to be known zero. But they're not - during trivialization the upper bits get changed (because an XOR isn't shrunk), so the icmp fails.

The fault is in demandedbits - its contract does clearly state that a non-demanded bit may either be zero or one.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259649 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-03 15:05:06 +00:00
Charlie Turner
c8dc70b584 [LoopVectorize] Use MapVector rather than DenseMap for MinBWs.
The order in which instructions are truncated in truncateToMinimalBitwidths
effects code generation. Switch to a map with a determinisic order, since the
iteration order over a DenseMap is not defined.

This code is not hot, so the difference in container performance isn't
interesting.

Many thanks to David Blaikie for making me aware of MapVector!

Fixes PR25490.

Differential Revision: http://reviews.llvm.org/D14981



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254179 91177308-0d34-0410-b5e6-96231b3b80d8
2015-11-26 20:39:51 +00:00
James Molloy
ae263d48b0 [LoopVectorize] Address post-commit feedback on r250032
Implemented as many of Michael's suggestions as were possible:
  * clang-format the added code while it is still fresh.
  * tried to change Value* to Instruction* in many places in computeMinimumValueSizes - unfortunately there are several places where Constants need to be handled so this wasn't possible.
  * Reduce the pass list on loop-vectorization-factors.ll.
  * Fix a bug where we were querying MinBWs for I->getOperand(0) but using MinBWs[I].

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252469 91177308-0d34-0410-b5e6-96231b3b80d8
2015-11-09 14:32:05 +00:00
James Molloy
7dab7edf06 [LoopVectorize] Shrink integer operations into the smallest type possible
C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
type (e.g. i32) whenever arithmetic is performed on them.

For targets with native i8 or i16 operations, usually InstCombine can shrink
the arithmetic type down again. However InstCombine refuses to create illegal
types, so for targets without i8 or i16 registers, the lengthening and
shrinking remains.

Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
their scalar equivalents do not, so during vectorization it is important to
remove these lengthens and truncates when deciding the profitability of
vectorization.

The algorithm this uses starts at truncs and icmps, trawling their use-def
chains until they terminate or instructions outside the loop are found (or
unsafe instructions like inttoptr casts are found). If the use-def chains
starting from different root instructions (truncs/icmps) meet, they are
unioned. The demanded bits of each node in the graph are ORed together to form
an overall mask of the demanded bits in the entire graph. The minimum bitwidth
that graph can be truncated to is the bitwidth minus the number of leading
zeroes in the overall mask.

The intention is that this algorithm should "first do no harm", so it will
never insert extra cast instructions. This is why the use-def graphs are
unioned, so that subgraphs with different minimum bitwidths do not need casts
inserted between them.

This algorithm works hard to reduce compile time impact. DemandedBits are only
queried if there are extends of illegal types and if a truncate to an illegal
type is seen. In the general case, this results in a simple linear scan of the
instructions in the loop.

No non-noise compile time impact was seen on a clang bootstrap build.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250032 91177308-0d34-0410-b5e6-96231b3b80d8
2015-10-12 12:34:45 +00:00
Matthew Simpson
19991cc69a [LV] Relax Small Size Reduction Type Requirement
This patch enables small size reductions in which the source types are smaller
than the reduction type (e.g., computing an i16 sum from the values in an i8
array). The previous behavior was to only allow small size reductions if the
source types and reduction type were the same. The change accounts for the fact
that the existing sign- and zero-extend instructions in these cases should
still be included in the cost model.

Differential Revision: http://reviews.llvm.org/D12770

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247337 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-10 21:12:57 +00:00
Silviu Baranga
9258bce088 [AArch64] Turn on by default interleaved access vectorization
Summary:
This change turns on by default interleaved access vectorization
for AArch64.

We also clean up some tests which were spedifically enabling this
behaviour.

Reviewers: rengolin

Subscribers: aemerson, llvm-commits, rengolin

Differential Revision: http://reviews.llvm.org/D12149

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246542 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-01 11:26:46 +00:00
Chad Rosier
ff123881d2 [LoopVectorize] Move test from r246149 into a target-specific folder to appease bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246154 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-27 15:24:47 +00:00
Silviu Baranga
aee16c42dc The tests added in r243270 require asserts to be enabled
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243274 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-27 15:22:49 +00:00
Silviu Baranga
cff701eeb9 Fix the tests added in r243270. Use 2>&1 instead of |&
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243273 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-27 15:08:55 +00:00
Silviu Baranga
541d079947 [ARM/AArch64] Fix cost model for interleaved accesses
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.

This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.

No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.

Reviewers: rengolin

Subscribers: aemerson, llvm-commits, rengolin

Differential Revision: http://reviews.llvm.org/D11524

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243270 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-27 14:39:34 +00:00
Hao Liu
43be1d53d1 [LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
       a = A[i];         // load of even element
       b = A[i+1];       // load of odd element
       ...               // operations on a, b, c, d
       A[i] = c;         // store of even element
       A[i+1] = d;       // store of odd element
     }

  The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
     %wide.vec = load <8 x i32>, <8 x i32>* %ptr
     %vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
     %vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>

  The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
     %interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7> 
     store <8 x i32> %interleaved.vec, <8 x i32>* %ptr

This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'. 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239291 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-08 06:39:56 +00:00
David Blaikie
7c9c6ed761 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 21:17:42 +00:00
David Blaikie
198d8baafb [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
Hao Liu
2f45a3c252 Move the target specific test case arbitrary-induction-step.ll to test/Transforms/LoopVectorize/AArch64 folder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227561 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-30 07:33:31 +00:00
Suyog Sarda
e190f77f91 Addition to r216371 (SLP and Loop Vectorization) and r218607 where
cost model for signed division by power of 2 was improved for AArch64.
The revision r218607 missed test case for Loop Vectorization.
Adding it in this revision.

Differential Revision: http://reviews.llvm.org/D6181



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221674 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-11 07:39:27 +00:00
Alp Toker
8aeca44558 Reduce verbiage of lit.local.cfg files
We can just split targets_to_build in one place and make it immutable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210496 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-09 22:42:55 +00:00
Alexey Samsonov
a66075fdd1 Use AArch64 instead of now removed ARM64 in test configs
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210229 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-05 00:25:30 +00:00
Tim Northover
29f94c7201 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:50:23 +00:00
Tim Northover
9105f66d6f AArch64/ARM64: remove AArch64 from tree prior to renaming ARM64.
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.

The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.

Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:42:26 +00:00
Adam Nemet
45fc47013f [Test] Trim unnecessary .c and .cpp from config.suffix in lit.local.cfg
Tested by comparing make check VERBOSE=1 before and after to make sure
no tests are missed.  (VERBOSE=1 prints the list of tests.)

Only one test :( remains where .cpp is required:

tools/llvm-cov/range_based_for.cpp:// RUN: llvm-cov range_based_for.cpp | FileCheck %s --check-prefix=STDOUT

The topic was discussed in this thread:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140428/214905.html

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208621 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-12 19:57:31 +00:00
Jiangning Liu
eea662fead Add missing config file for newly added test case introduced by r206563.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206567 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-18 09:05:50 +00:00
Jiangning Liu
a1da819896 This commit allows vectorized loops to be unrolled by a factor of 2 for AArch64.
A new test case is also added for ARM64.

Patched by Z.Zheng



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206563 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-18 07:57:54 +00:00