1. Used update_llc_test_checks.py to tighten checks
2. Fixed triple (nothing Darwin-specific here)
3. Replaced CPU specifiers with attributes
4. Fixed comments
5. Removed IvyBridge run because it did not add any coverage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240058 91177308-0d34-0410-b5e6-96231b3b80d8
They had been getting emitted as a section + offset reference, which
is bogus since the value needs to be the offset within the GOT, not
the actual address of the symbol's object.
Differential Revision: http://reviews.llvm.org/D10441
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240020 91177308-0d34-0410-b5e6-96231b3b80d8
- zext the value to alloc size first, then check if the value repeats
with zero padding included. If so we can still emit a .space
- Do the checking with APInt.isSplat(8), which handles non-pow2 types
- Also handle large constants (bit width > 64)
- In a ConstantArray all elements have the same type, so it's sufficient
to check the first constant recursively and then just compare if all
following constants are the same by pointer compare
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239977 91177308-0d34-0410-b5e6-96231b3b80d8
Added explicit sign extension for v4i16/v8i16 to v4i32/v8i32 before conversion to floats. Matches existing support for v4i8/v8i8.
Follow up to D10433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239966 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is done by first adding two additional instructions to convert the
alloca returned address to local and convert it back to generic. Then
replace all uses of alloca instruction with the converted generic
address. Then we can rely NVPTXFavorNonGenericAddrSpace pass to combine
the generic addresscast and the corresponding Load, Store, Bitcast, GEP
Instruction together.
Patched by Xuetian Weng (xweng@google.com).
Test Plan: test/CodeGen/NVPTX/lower-alloca.ll
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: meheff, broune, eliben, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10483
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239964 91177308-0d34-0410-b5e6-96231b3b80d8
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239940 91177308-0d34-0410-b5e6-96231b3b80d8
It's been used before to avoid infinite loops caused by separate CGP
optimizations undoing one another. We found one more such issue
caused by r238054. To avoid it, generalize the "InsertedTruncs"
set to any inst, and use it to avoid touching those again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239938 91177308-0d34-0410-b5e6-96231b3b80d8
The patch triggers a miscompile on SPEC 2006 403.gcc with the (ref)
200.i and scilab.i inputs. I opened PR23866 to track analysis of this.
This reverts commit r238793.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239880 91177308-0d34-0410-b5e6-96231b3b80d8
These were originally added in r227242,
but that patch was reverted because it
caused a failure on AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239860 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.
Differential Revision: http://reviews.llvm.org/D10433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239855 91177308-0d34-0410-b5e6-96231b3b80d8
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239849 91177308-0d34-0410-b5e6-96231b3b80d8
This commit reports an error when a machine function from a MIR file that contains
LLVM IR can't find a function with the same name in the loaded LLVM IR module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239831 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r239539. Don't assume the collected number of
stores is the same vector size. Just take the first N
stores to fill the vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239825 91177308-0d34-0410-b5e6-96231b3b80d8
When we multiply two 64-bit vectors, we extract lower and upper part and use the PMULUDQ instruction.
When one of the operands is a constant, the upper part may be zero, we know this at compile time.
Example: %a = mul <4 x i64> %b, <4 x i64> < i64 5, i64 5, i64 5, i64 5>.
I'm checking the value of the upper part and prevent redundant "multiply", "shift" and "add" operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239802 91177308-0d34-0410-b5e6-96231b3b80d8
These are really immediate DUPs, and suffer from the same problem
with long instructions with a high/2 variant (e.g. smull).
By extending a MOVI (or DUP, before this patch), we can avoid an ext
on the other operand of the long instruction, e.g. turning:
ext.16b v0, v0, v0, #8
movi.4h v1, #0x53
smull.4s v0, v0, v1
into:
movi.8h v1, #0x53
smull2.4s v0, v0, v1
While there, add a now-necessary combine to fold (VT NVCAST (VT x)).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239799 91177308-0d34-0410-b5e6-96231b3b80d8
This commit creates a dummy LLVM IR function with one basic block and an unreachable
instruction for each parsed machine function when the MIR file doesn't have LLVM IR.
This change is required as the machine function analysis pass creates machine
functions only for the functions that are defined in the current LLVM module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10135
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239778 91177308-0d34-0410-b5e6-96231b3b80d8
This commit reports an error when the MIR parser encounters a machine
function with the name that is the same as the name of a different
machine function.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10130
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239774 91177308-0d34-0410-b5e6-96231b3b80d8
This commit connects the machine function analysis pass (which creates machine
functions) to the MIR parser, which will initialize the machine functions
with the state from the MIR file and reconstruct the machine IR.
This commit introduces a new interface called 'MachineFunctionInitializer',
which can be used to provide custom initialization for the machine functions.
This commit also introduces a new diagnostic class called
'DiagnosticInfoMIRParser' which is used for MIR parsing errors.
This commit modifies the default diagnostic handling in LLVMContext - now the
the diagnostics are printed directly into llvm::errs() so that the MIR parsing
errors can be printed with colours.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9928
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239753 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM targeting aarch64 doesn't correctly produce aligned accesses for non-aligned
data at -O0/fast-isel (-mno-unaligned-access).
The root cause seems to be in fast-isel not producing unaligned access correctly
for -mno-unaligned-access.
The patch just aborts fast-isel for loads and stores when -mno-unaligned-access is
present.
The regression test is updated to check this new test case (-mno-unaligned-access
together with fast-isel).
Differential Revision: http://reviews.llvm.org/D10360
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239732 91177308-0d34-0410-b5e6-96231b3b80d8
Re-commit after adding "-aarch64-neon-syntax=generic" to fix the failure on OS X.
This patch was firstly committed in r239514, then reverted in r239544 because of a syntax incompatible failure on OS X.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239711 91177308-0d34-0410-b5e6-96231b3b80d8