TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274304 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274189 91177308-0d34-0410-b5e6-96231b3b80d8
Remember the last choice for the top/bottom scheduling boundary in
bidirectional scheduling mode. The top choice should not change if we
schedule at the bottom and vice versa.
This allows us to improve compiletime: We only recalculate the best pick
for one border and re-use the cached top-pick from the other border.
Differential Revision: http://reviews.llvm.org/D19350
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273766 91177308-0d34-0410-b5e6-96231b3b80d8
In bidirectional scheduling this gives more stable results than just
comparing the "reason" fields of the top/bottom node because the reason
field may be higher depending on what other nodes are in the queue.
Differential Revision: http://reviews.llvm.org/D19401
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273755 91177308-0d34-0410-b5e6-96231b3b80d8
Do not dump intermediate state of the pending queue anymore now that we
always dump the final state before picking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273618 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor LiveIntervals::renameDisconnectedComponents() to be a pass.
Also change the name to "RenameIndependentSubregs":
- renameDisconnectedComponents() worked on a MachineFunction at a time
so it is a natural candidate for a machine function pass.
- The algorithm is testable with a .mir test now.
- This also fixes a problem where the lazy renaming as part of the
MachineScheduler introduced IMPLICIT_DEF instructions after the number
of a nodes in a region were counted leading to a mismatch.
Differential Revision: http://reviews.llvm.org/D20507
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271345 91177308-0d34-0410-b5e6-96231b3b80d8
Fix renameDisconnectedComponents() creating vreg uses that can be
reached from function begin withouthaving a definition (or explicit
live-in). Fix this by inserting IMPLICIT_DEF instruction before
control-flow joins as necessary.
Removes an assert from MachineScheduler because we may now get
additional IMPLICIT_DEF when preparing the scheduling policy.
This fixes the underlying problem of http://llvm.org/PR27705
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270259 91177308-0d34-0410-b5e6-96231b3b80d8
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269011 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAGMI::initQueues changes the RegionBegin to the first non-debug
instruction. Since it does not track register pressure, it does not affect
any RP trackers. ScheduleDAGMILive inherits initQueues from ScheduleDAGMI,
and it does reset the TopTPTracker in its schedule method. Any derived,
target-specific scheduler will need to do it as well, but the TopRPTracker
is only exposed as a "const" object to derived classes. Without the ability
to modify the tracker directly, this leaves a derived scheduler with a
potential of having the TopRPTracker out-of-sync with the CurrentTop.
The symptom of the problem:
void llvm::ScheduleDAGMILive::scheduleMI(llvm::SUnit *, bool):
Assertion `TopRPTracker.getPos() == CurrentTop && "out of sync"' failed.
Differential Revision: http://reviews.llvm.org/D19438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267918 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267022 91177308-0d34-0410-b5e6-96231b3b80d8
Perform store clustering just like load clustering. This change add
StoreClusterMutation in machine-scheduler. To control StoreClusterMutation,
added enableClusterStores() in TargetInstrInfo.h. This is enabled only on
AArch64 for now.
This change also add support for unscaled stores which were not handled in
getMemOpBaseRegImmOfs().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266437 91177308-0d34-0410-b5e6-96231b3b80d8
There is no problem with the code today, but the fix will avoid a crash
in test/CodeGen/AMDGPU/subreg-coalescer-undef-use.ll once the
DetectDeadLanes pass is added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265351 91177308-0d34-0410-b5e6-96231b3b80d8
The truncation was causing the sorting algorithm to behave oddly when comparing
positive and negative offsets. Fortunately, this doesn't currently happen in
practice and was exposed by a WIP. Thus, I can't test this change now, but the
follow on patch will.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263255 91177308-0d34-0410-b5e6-96231b3b80d8
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262115 91177308-0d34-0410-b5e6-96231b3b80d8
Note that this is disabled by default and still requires a patch to
handleMove() which is not upstreamed yet.
If the TrackLaneMasks policy/strategy is enabled the MachineScheduler
will build a schedule graph where definitions of independent
subregisters are no longer serialised.
Implementation comments:
- Without lane mask tracking a sub register def also counts as a use
(except for the first one with the read-undef flag set), with lane
mask tracking enabled this is no longer the case.
- Pressure Diffs where previously maintained per definition of a
vreg with the help of the SSA information contained in the
LiveIntervals. With lanemask tracking enabled we cannot do this
anymore and instead change the pressure diffs for all uses of the vreg
as it becomes live/dead. For this changed style to work correctly we
ignore uses of instructions that define the same register again: They
won't affect register pressure.
- With lanemask tracking we remove all read-undef flags from
sub register defs when building the graph and re-add them later when
all vreg lanes have become dead.
Differential Revision: http://reviews.llvm.org/D14969
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258259 91177308-0d34-0410-b5e6-96231b3b80d8
increase
Summary:
This patch adds a function called getRegPressureSetScore() to
TargetRegisterInfo. The MachineScheduler uses this when comparing
instruction that increase the register pressure of different sets
to determine which set is safer to increase.
This hook is useful for GPU targets where the number of registers in the
class is not the best metric for determing which presser set is safer to
increase.
Future work may include adding more parameters to this function, like
for example, the current pressure level of the set or the amount that
the pressure will be increased/decreased.
Reviewers: qcolombet, escha, arsenm, atrick, MatzeB
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14806
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255795 91177308-0d34-0410-b5e6-96231b3b80d8
When there is only 1 node left in the ready queue and it is picked call
the reason "ONLY1" instead of "NOCAND".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253096 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAGInstrs doesn't behave differently before or after register
allocation. It was only used in a method of MachineSchedulerBase which
behaved differently in MachineScheduler/PostMachineScheduler. Change
this to let MachineScheduler/PostMachineScheduler just pass in a
parameter to that function.
The order of the LiveIntervals* and bool RemoveKillFlags paramters have
been switched to make out-of-tree code fail instead of unintentionally
passing a value intended for the IsPostRA flag to the (previously
following and default initialized) RemoveKillFlags.
Differential Revision: http://reviews.llvm.org/D14245
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251883 91177308-0d34-0410-b5e6-96231b3b80d8
This was a layering violation in ScheduleDAGInstrs (and
MachineSchedulerBase) they both shouldn't know directly whether they are
used by the PostMachineScheduler or the MachineScheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251608 91177308-0d34-0410-b5e6-96231b3b80d8
r248010 changed the -debug output to use short ids, but did not
similarly modify the graph printer. Change to be consistent, for ease of
cross-reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251465 91177308-0d34-0410-b5e6-96231b3b80d8
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247167 91177308-0d34-0410-b5e6-96231b3b80d8
Before creating a schedule edge to encourage MacroOpFusion check that:
- The predecessor actually writes a register that the branch reads.
- The predecessor has no successors in the ScheduleDAG so we can
schedule it in front of the branch.
This avoids skewing the scheduling heuristic in cases where macroop
fusion cannot happen.
Differential Revision: http://reviews.llvm.org/D10745
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242723 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8