This has two advantages:
1) We slowly move away from ErrorOr to the new handling interface,
in the hope of having an uniform error handling in LLVM, eventually.
2) We're starting to have *meaningful* error messages for invalid
object ELF files, rather than a generic "parse error". At some point
we should include also the offset to improve the quality of the
diagnostic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287081 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using sed to generate the input and pipe the result to
strings, use the static input instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287079 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We update the documentation to define what the requirements are for the
provided XRay log handler. This is to make it clear that the function
pointer provided must do internal synchronisation and that there are no
guarantees provided by XRay on when the function shall be invoked once
it has been installed as a log handler.
Reviewers: rSerge, rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26651
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287073 91177308-0d34-0410-b5e6-96231b3b80d8
In https://reviews.llvm.org/D25347, Geoff noticed that we still have
useless copy that we can eliminate after register allocation. At the
time the allocation is chosen for those copies, they are not useless
but, because of changes in the surrounding code, later on they might
become useless.
The Greedy allocator already has a mechanism to deal with such cases
with a late recoloring. However, we missed to record the some of the
missed hints.
This commit fixes that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287070 91177308-0d34-0410-b5e6-96231b3b80d8
This is required by DbiStream, but DbiStreamBuilder didn't align
these substreams, so the output of DbiSTreamBuilder couldn't be
read by DbiStream.
Test will be added to LLD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287067 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We don't do BypassSlowDivision when the denominator is a constant, but
we do do it when the numerator is a constant.
This patch makes two related changes to BypassSlowDivision when the
numerator is a constant:
* If the numerator is too large to fit into the bypass width, don't
bypass slow division (because we'll never run the smaller-width
code).
* If we bypass slow division where the numerator is a constant, don't
OR together the numerator and denominator when determining whether
both operands fit within the bypass width. We need to check only the
denominator.
Reviewers: tra
Subscribers: llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26699
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287062 91177308-0d34-0410-b5e6-96231b3b80d8
These numbers are intended to be capped at 65535, but
`std::max<uint16_t>(UINT16_MAX, N)` always returns N for any N because
the expression is the same as `std::max((uint16_t)UINT16_MAX, (uint16_t)N)`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287060 91177308-0d34-0410-b5e6-96231b3b80d8
For the default, small and medium code model, use the existing
difference from the jump table towards the label. For all other code
models, setup the picbase and use the difference between the picbase and
the block address.
Overall, this results in smaller data tables at the expensive of one or
two more arithmetic operation at the jump site. Given that we only create
jump tables with a lot more than two entries, it is a net win in size.
For larger code models the assumption remains that individual functions
are no larger than 2GB.
Differential Revision: https://reviews.llvm.org/D26336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287059 91177308-0d34-0410-b5e6-96231b3b80d8
To get a good error message for all files that could contain Mach-O
files the code in llvm-objdump needs to use the archive member name
and name of the architecture of a slice of a universal file in those cases
where the error come from a Mach-O file in an archive or a universal file.
Most of this is fixed by moving the call to checkSymbolTable() into
ProcessMachO() and calling it when the operation needs the symbol
table. And then calling the form of report_error() that has the
ArchiveName and ArchitectureName arguments. One other place
needed to call this form of report_error() also with these arguments.
Also changed the code in MachODump.cpp to not use report_fatal_error()
and use report_error() instead to make the code smaller and cleaner. All
cases of this are for errors with the symbol table which should now never
be tripped since checkSymbolTable() should be called first to get a good
error message in these cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287050 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for instrumenting masked loads and stores under
ASan, if they have a constant mask.
isInterestingMemoryAccess now supports returning a mask to be applied to
the loads, and instrumentMop will use it to generate additional checks.
Added tests for v4i32 v8i32, and v4p0i32 (~v4i64) for both loads and
stores (as well as a test to verify we don't add checks to non-constant
masks).
Differential Revision: https://reviews.llvm.org/D26230
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287047 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes, llvm-symbolizer gives wrong results due to incorrect sizes of some symbols. The reason for that was an incorrectly sorted array in computeSymbolSizes. The comparison function used subtraction of unsigned types, which is incorrect. Let's change this to return explicit -1 or 1.
Differential Revision: https://reviews.llvm.org/D26537
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287028 91177308-0d34-0410-b5e6-96231b3b80d8
Also respect the TII hook for these like the generic code does
in case we want a flag later to disable this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287021 91177308-0d34-0410-b5e6-96231b3b80d8
The wave barrier represents the discardable barrier. Its main purpose is to
carry convergent attribute, thus preventing illegal CFG optimizations. All lanes
in a wave come to convergence point simultaneously with SIMT, thus no special
instruction is needed in the ISA. The barrier is discarded during code generation.
Differential Revision: https://reviews.llvm.org/D26585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287007 91177308-0d34-0410-b5e6-96231b3b80d8
Also, fix the test params to use an attribute rather than a CPU model
and remove the AVX run because that does nothing but check for a 'v'
prefix in all of these tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287003 91177308-0d34-0410-b5e6-96231b3b80d8
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286999 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes the runtime results produces by the fallback multiplication expansion introduced in r270720.
For tests I created a fuzz tester that compares the results with Boost.Multiprecision.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26628
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286998 91177308-0d34-0410-b5e6-96231b3b80d8
When both WidenIV::getWideRecurrence and WidenIV::getExtendedOperandRecurrence
return non-null but different WideAddRec, if getWideRecurrence is called
before getExtendedOperandRecurrence, we won't bother to call
getExtendedOperandRecurrence again. But As we know it is possible that after
SCEV folding, we cannot prove the legality using the SCEVAddRecExpr returned
by getWideRecurrence. Meanwhile if getExtendedOperandRecurrence returns non-null
WideAddRec, we know for sure that it is legal to do widening for current instruction.
So it is better to put getExtendedOperandRecurrence before getWideRecurrence, which
will increase the chance of successful widening.
Differential Revision: https://reviews.llvm.org/D26059
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286987 91177308-0d34-0410-b5e6-96231b3b80d8
Just needed to add the intrinsics to the exist switch. The code is generic enough to support the wider vectors with no changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286980 91177308-0d34-0410-b5e6-96231b3b80d8
This patch helps avoids poor legalization of boolean vector results (e.g. 8f32 -> 8i1 -> 8i16) that feed into SINT_TO_FP by inserting an early SIGN_EXTEND and so help improve the truncation logic.
This is not necessary for AVX512 targets where boolean vectors are legal - AVX512 manages to lower ( sint_to_fp vXi1 ) into some form of ( select mask, 1.0f , 0.0f ) in most cases.
Fix for PR13248
Differential Revision: https://reviews.llvm.org/D26583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286979 91177308-0d34-0410-b5e6-96231b3b80d8