clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124073 91177308-0d34-0410-b5e6-96231b3b80d8
that have PHI or select uses of their element pointers. This can often happen
when instcombine sinks two loads into a successor, inserting a phi or select.
With this patch, we can scalarize the alloca, but the pinned elements are not
yet promoted. This is still a win for large aggregates where only one element
is used. This fixes rdar://8904039 and part of rdar://7339113 (poor codegen
on stringswitch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124070 91177308-0d34-0410-b5e6-96231b3b80d8
handle the "Transformation preventing inst" printing,
so that -scalarrepl -debug will always print the rejected
instruction. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124066 91177308-0d34-0410-b5e6-96231b3b80d8
A == B, and A > B, does not mean we can fold it to true. We still need to
check for A ? B (A unordered B).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123993 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123991 91177308-0d34-0410-b5e6-96231b3b80d8
qadd and qdadd uses "rd, rm, rn", the same applies to the 'sub' variants. This
is described in ARM manuals and matches the encoding used by the gnu assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123975 91177308-0d34-0410-b5e6-96231b3b80d8
DAG. Disable using "-disable-sched-cycles".
For ARM, this enables a framework for modeling the cpu pipeline and
counting stalls. It also activates several heuristics to drive
scheduling based on the model. Scheduling is inherently imprecise at
this stage, and until spilling is improved it may defeat attempts to
schedule. However, this framework provides greater control over
tuning codegen.
Although the flag is not target-specific, it should have very little
affect on the default scheduler used by x86. The only two changes that
affect x86 are:
- scheduling a high-latency operation bumps the current cycle so independent
operations can have their latency covered. i.e. two independent 4
cycle operations can produce results in 4 cycles, not 8 cycles.
- Two operations with equal register pressure impact and no
latency-based stalls on their uses will be prioritized by depth before height
(height is irrelevant if no stalls occur in the schedule below this point).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123971 91177308-0d34-0410-b5e6-96231b3b80d8
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123969 91177308-0d34-0410-b5e6-96231b3b80d8
a select. A vector select is pairwise on each element so we'd need a new
condition with the right number of elements to select on. Fixes PR8994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123963 91177308-0d34-0410-b5e6-96231b3b80d8
While here, I'd like to complain about how vector is not an aggregate type
according to llvm::Type::isAggregateType(), but they're listed under aggregate
types in the LangRef and zero vectors are stored as ConstantAggregateZero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123956 91177308-0d34-0410-b5e6-96231b3b80d8
value, the "add pc" must be CSE'ed at the same time. We could follow the same
approach as T2 by adding pseudo instructions that combine the ldr + "add pc".
But the better approach is to use movw + movt (which I will enable soon), so
I'll leave this as a TODO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123949 91177308-0d34-0410-b5e6-96231b3b80d8
The PassManager did not implement the transitivity of requiredTransitive. This
was unnoticed since 2006.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123942 91177308-0d34-0410-b5e6-96231b3b80d8
in cdp/cdp2 instructions. Also increase the hack with cdp/cdp2 instructions.
- Fix the encoding of cdp/cdp2 instructions for ARM (no thumb and thumb2 yet) and add testcases for t
hem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123927 91177308-0d34-0410-b5e6-96231b3b80d8
The value mapping gets confused about which original values have multiple new
definitions so they may need phi insertions.
This could probably be simplified by letting enterIntvBefore() take a live range
to be added following the instruction. As long as the range stays inside the
same basic block, value mapping shouldn't be a problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123926 91177308-0d34-0410-b5e6-96231b3b80d8
auto-simplier the transform most missed by early-cse is (zext X) != 0 -> X != 0.
This patch adds this transform and some related logic to InstructionSimplify
and removes some of the logic from instcombine (unfortunately not all because
there are several situations in which instcombine can improve things by making
new instructions, whereas instsimplify is not allowed to do this). At -O2 this
often results in more than 15% more simplifications by early-cse, and results in
hundreds of lines of bitcode being eliminated from the testsuite. I did see some
small negative effects in the testsuite, for example a few additional instructions
in three programs. One program, 483.xalancbmk, got an additional 35 instructions,
which seems to be due to a function getting an additional instruction and then
being inlined all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123911 91177308-0d34-0410-b5e6-96231b3b80d8
to add/sub by doing the normal operation and then checking for overflow
afterwards. This generally relies on the DAG handling the later invalid
operations as well.
Fixes the 64-bit part of rdar://8622122 and rdar://8774702.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123908 91177308-0d34-0410-b5e6-96231b3b80d8
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123905 91177308-0d34-0410-b5e6-96231b3b80d8