Summary:
Implement BUFFER_ATOMIC_CMPSWAP{,_X2} instructions on all GCN targets, and FLAT_ATOMIC_CMPSWAP{,_X2} on CI+.
32-bit instruction variants tested manually on Kabini and Bonaire. Tests and parts of code provided by Jan Veselý.
Patch by: Vedran Miletić
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: jvesely, scchan, kanarayan, arsenm
Differential Revision: http://reviews.llvm.org/D17280
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265170 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This results in higher register usage, but should make it easier for
the compiler to hide latency.
This pass is a prerequisite for some more scheduler improvements, and I
think the increase register usage with this patch is acceptable, because
when combined with the scheduler improvements, the total register usage
will decrease.
shader-db stats:
2382 shaders in 478 tests
Totals:
SGPRS: 48672 -> 49088 (0.85 %)
VGPRS: 34148 -> 34847 (2.05 %)
Code Size: 1285816 -> 1289128 (0.26 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 492544 -> 573440 (16.42 %) bytes per wave
Max Waves: 6856 -> 6846 (-0.15 %)
Wait states: 0 -> 0 (0.00 %)
Depends on D18451
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18452
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264876 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This helps prevent load clustering from drastically increasing register
pressure by trying to cluster 4 SMRDx8 loads together. The limit of 16
bytes was chosen, because it seems like that was the original intent
of setting the limit to 4 instructions, but more analysis could show
that a different limit is better.
This fixes yields small decreases in register usage with shader-db, but
also helps avoid a large increase in register usage when lane mask
tracking is enabled in the machine scheduler, because lane mask tracking
enables more opportunities for load clustering.
shader-db stats:
2379 shaders in 477 tests
Totals:
SGPRS: 49744 -> 48600 (-2.30 %)
VGPRS: 34120 -> 34076 (-0.13 %)
Code Size: 1282888 -> 1283184 (0.02 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 495616 -> 492544 (-0.62 %) bytes per wave
Max Waves: 6843 -> 6853 (0.15 %)
Wait states: 0 -> 0 (0.00 %)
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18451
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264589 91177308-0d34-0410-b5e6-96231b3b80d8
There is no benefit to these since materializing the constant 1
requires the same number of instructions as materializing uint_max
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264215 91177308-0d34-0410-b5e6-96231b3b80d8
Strengthen tests of storing frame indices.
Right now this just creates irrelevant scheduling changes.
We don't want to have multiple frame index operands
on an instruction. There seem to be various assumptions
that at least the same frame index will not appear twice
in the LocalStackSlotAllocation pass.
There's no reason to have this happen, and it just
makes it easy to introduce bugs where the immediate
offset is appplied to the storing instruction when it should
really be applied to the value being stored as a separate
add.
This might not be sufficient. It might still be problematic
to have an add fi, fi situation, but that's even less unlikely
to happen in real code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264200 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Whole quad mode is already enabled for pixel shaders that compute
derivatives, but it must be suspended for instructions that cause a
shader to have side effects (i.e. stores and atomics).
This pass addresses the issue by storing the real (initial) live mask
in a register, masking EXEC before instructions that require exact
execution and (re-)enabling WQM where required.
This pass is run before register coalescing so that we can use
machine SSA for analysis.
The changes in this patch expose a problem with the second machine
scheduling pass: target independent instructions like COPY implicitly
use EXEC when they operate on VGPRs, but this fact is not encoded in
the MIR. This can lead to miscompilation because instructions are
moved past changes to EXEC.
This patch fixes the problem by adding use-implicit operands to
target independent instructions. Some general codegen passes are
relaxed to work with such implicit use operands.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18162
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263982 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When control flow is implemented using the exec mask, the compiler will
insert branch instructions to skip over the masked section when exec is
zero if the section contains more than a certain number of instructions.
The previous code would only count instructions in successor blocks,
and this patch modifies the code to start counting instructions in all
blocks between the start and end of the branch.
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18282
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263969 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Allow the selection of BUFFER_LOAD_FORMAT_x and _XY. Do this now before
the frontend patches land in Mesa. Eventually, we may want to automatically
reduce the size of loads at the LLVM IR level, which requires such overloads,
and in some cases Mesa can generate them directly.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18255
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263792 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These intrinsics expose the BUFFER_ATOMIC_* instructions and will be used
by Mesa to implement atomics with buffer semantics. The intrinsic interface
matches that of buffer.load.format and buffer.store.format, except that the
GLC bit is not exposed (it is automatically deduced based on whether the
return value is used).
The change of hasSideEffects is required for TableGen to accept the pattern
that matches the intrinsic.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, rivanvx, llvm-commits
Differential Revision: http://reviews.llvm.org/D18151
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263791 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We cannot easily deduce that an offset is in an SGPR, but the Mesa frontend
cannot easily make use of an explicit soffset parameter either. Furthermore,
it is likely that in the future, LLVM will be in a better position than the
frontend to choose an SGPR offset if possible.
Since there aren't any frontend uses of these intrinsics in upstream
repositories yet, I would like to take this opportunity to change the
intrinsic signatures to a single offset parameter, which is then selected
to immediate offsets or voffsets using a ComplexPattern.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18218
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263790 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Uniform loops where the branch leaving the loop is predicated on VCCNZ
must be skipped if EXEC = 0, otherwise they will be infinite.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18137
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263658 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Static LDS size is saved in MachineFunctionInfo::LDSSize,
We define a pseudo instruction with usesCustomInserter bit set. Then, in EmitInstrWithCustomInserter,
we replace this pseudo instruction with a mov of MachineFunctionInfo::LDSSize.
Reviewers:
arsenm
tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18064
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263563 91177308-0d34-0410-b5e6-96231b3b80d8
If a constant is the same as the reverse of an inline immediate,
this is 4 bytes smaller than having to embed a 32-bit literal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263201 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
They correspond to BUFFER_LOAD/STORE_FORMAT_XYZW and will be used by Mesa
to implement the GL_ARB_shader_image_load_store extension.
The intention is that for llvm.amdgcn.buffer.load.format, LLVM will decide
whether one of the _X/_XY/_XYZ opcodes can be used (similar to image sampling
and loads). However, this is not currently implemented.
For llvm.amdgcn.buffer.store, LLVM cannot decide to use one of the "smaller"
opcodes and therefore the intrinsic is overloaded. Currently, only the v4f32
is actually implemented since GLSL also only has a vec4 variant of the store
instructions, although it's conceivable that Mesa will want to be smarter
about this in the future.
BUFFER_LOAD_FORMAT_XYZW is already exposed via llvm.SI.vs.load.input, which
has a legacy name, pretends not to access memory, and does not capture the
full flexibility of the instruction.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17277
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263140 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The code in SelectionDAG did not handle the case where the
register type and output types were different, but had the same size.
Reviewers: arsenm, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17940
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263022 91177308-0d34-0410-b5e6-96231b3b80d8
Supprot DPP syntax as used in SP3 (except several operands syntax).
Added dpp-specific operands in td-files.
Added DPP flag to TSFlags to determine if instruction is dpp in InstPrinter.
Support for VOP2 DPP instructions in td-files.
Some tests for DPP instructions.
ToDo:
- VOP2bInst:
- vcc is considered as operand
- AsmMatcher doesn't apply mnemonic aliases when parsing operands
- v_mac_f32
- v_nop
- disable instructions with 64-bit operands
- change dpp_ctrl assembler representation to conform sp3
Review: http://reviews.llvm.org/D17804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263008 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is necessary for when we run out of VGPRs and can no
longer use v_{read,write}_lane for spilling SGPRs.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17592
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262732 91177308-0d34-0410-b5e6-96231b3b80d8
On AMDGPU where operations i64 operations are often bitcasted to v2i32
and back, this pattern shows up regularly where it breaks some
expected combines on i64, such as load width reducing.
This fixes some test failures in a future commit when i64 loads
are changed to promote.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262397 91177308-0d34-0410-b5e6-96231b3b80d8
This reduces the number of bitcast nodes and generally cleans up the
DAG when bitcasting between integers and vectors everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262358 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch impleemnts DS_PERMUTE/DS_BPERMUTE instruction definitions and intrinsics,
which are new since VI.
Reviewers: tstellarAMD, arsenm
Subscribers: llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D17614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262356 91177308-0d34-0410-b5e6-96231b3b80d8
This currently does not have the control over the bitwidth,
and there are missing optimizations to reduce the integer to
32-bit if it can be.
But in most situations we do want the sinking to occur.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262296 91177308-0d34-0410-b5e6-96231b3b80d8
The maximum private allocation for the whole GPU is 4G,
so the maximum possible index for a single workitem is the
maximum size divided by the smallest granularity for a dispatch.
This increases the number of known zero high bits, which
enables more offset folding. The maximum private size per
workitem with this is 128M but may be smaller still.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262153 91177308-0d34-0410-b5e6-96231b3b80d8
In the case where op = add, y = base_ptr, and x = offset, this
transform:
(op y, (op x, c1)) -> (op (op x, y), c1)
breaks the canonical form of add by putting the base pointer in the
second operand and the offset in the first.
This fix is important for the R600 target, because for some address
spaces the base pointer and the offset are stored in separate register
classes. The old pattern caused the ISel code for matching addressing
modes to put the base pointer and offset in the wrong register classes,
which required no-trivial code transformations to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262148 91177308-0d34-0410-b5e6-96231b3b80d8
This matches the behavior of the HSAIL clock instruction.
s_realmemtime is used if the subtarget supports it, and falls
back to s_memtime if not.
Also introduces new intrinsics for each of s_memtime / s_memrealtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262119 91177308-0d34-0410-b5e6-96231b3b80d8
Add parsing and printing of image operands. Matches legacy sp3 assembler.
Change image instruction order to have data/image/sampler operands in the beginning. This is needed because optional operands in MC are always last.
Update SITargetLowering for new order.
Add basic MC test.
Update CodeGen tests.
Review: http://reviews.llvm.org/D17574
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261995 91177308-0d34-0410-b5e6-96231b3b80d8