Disabling aggressive LSR saves compilation time, and with the new
indvars behavior usually improves performance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140590 91177308-0d34-0410-b5e6-96231b3b80d8
The minor bug heuristic was noticed by inspection. I added the
isLoser/isValid helpers because they will become more
important with subsequent checkins.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140580 91177308-0d34-0410-b5e6-96231b3b80d8
Many targets use pseudo instructions to help register allocation. Like
the COPY instruction, these pseudos can be expanded after register
allocation. The early expansion can make life easier for PEI and the
post-ra scheduler.
This patch adds a hook that is called for all remaining pseudo
instructions from the ExpandPostRAPseudos pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140472 91177308-0d34-0410-b5e6-96231b3b80d8
SDNodes may return values which are wider than the incoming element types. In
this patch we fix the integer promotion of these nodes.
Fixes spill-q.ll when running -promote-elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140471 91177308-0d34-0410-b5e6-96231b3b80d8
I'll fix the file contents in the next commit.
This pass is currently expanding the COPY and SUBREG_TO_REG pseudos. I
am going to add a hook so targets can expand more pseudo-instructions
after register allocation.
Many targets have pseudo-instructions that assist the register
allocator. They can be expanded after register allocation, before PEI
and PostRA scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140469 91177308-0d34-0410-b5e6-96231b3b80d8
(this is always the case for scalars), otherwise use the promoted result type.
Fix test/CodeGen/X86/vsplit-and.ll when promote-elements is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140464 91177308-0d34-0410-b5e6-96231b3b80d8
When generating the trunc-store of i1's, we need to use the vector type and not
the scalar type.
This patch fixes the assertion in CodeGen/Generic/bool-vector.ll when
running with -promote-elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140463 91177308-0d34-0410-b5e6-96231b3b80d8
No test case. Noticed by inspection and I doubt it ever affects the
outcome of the overall heuristic, let alone final codegen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140431 91177308-0d34-0410-b5e6-96231b3b80d8
Math is hard, and isScaledConstantInRange() always returned false for
negative constants. It was doing unsigned division of negative numbers
before casting back to signed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140425 91177308-0d34-0410-b5e6-96231b3b80d8
DecomposeMERGE_VALUES to "know" that results are legalized in
a particular order, by passing it the number of the result
being legalized (the type legalization core provides this, it
just needs to be passed on).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140373 91177308-0d34-0410-b5e6-96231b3b80d8
integer-promotion of CONCAT_VECTORS.
Test: test/CodeGen/X86/widen_shuffle-1.ll
This patch fixes the above tests (when running in with -promote-elements).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140372 91177308-0d34-0410-b5e6-96231b3b80d8
Define function getNextIntArgReg, which takes a register as a parameter and
returns the next O32 argument integer register. Use this function when double
precision floating point arguments are passed in two integer registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140363 91177308-0d34-0410-b5e6-96231b3b80d8
We already support GR64 <-> VR128 copies. All of these copies break
partial register dependencies by zeroing the high part of the target
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140348 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes register class constraints are trivial, like GR32->GR32_NOSP,
or GPR->rGPR. Teach InstrEmitter to simply constrain the virtual
register instead of emitting a copy in these cases.
Normally, these copies are handled by the coalescer. This saves some
coalescer work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140340 91177308-0d34-0410-b5e6-96231b3b80d8
The function will refuse to use a register class with fewer registers
than MinNumRegs. This can be used by clients to avoid accidentally
increase register pressure too much.
The default value of MinNumRegs=0 doesn't affect how constrainRegClass()
works.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140339 91177308-0d34-0410-b5e6-96231b3b80d8
floating point add/sub of appropriate shuffle vectors. Does not
synthesize the 256 bit AVX versions because they work differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140332 91177308-0d34-0410-b5e6-96231b3b80d8
instead of allocating physical registers.
This is part of a work-in-progress overhaul of the PTX register allocation scheme.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140305 91177308-0d34-0410-b5e6-96231b3b80d8
- x87: no min or max.
- SSE1: min/max for single precision scalars and vectors.
- SSE2: min/max for single and double precision scalars and vectors.
- AVX: as SSE2, but also supports the wider ymm vectors. (this is covered by the isTypeLegal check)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140296 91177308-0d34-0410-b5e6-96231b3b80d8
Few weeks ago, llvm completely inverted the debug info graph. Earlier each debug info node used to keep track of its compile unit, now compile unit keeps track of important nodes. One impact of this change is that the global variable's do not have any context, which should be checked before deciding to use AT_specification DIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140282 91177308-0d34-0410-b5e6-96231b3b80d8
Vector SetCC result types need to be type-legalized.
This code worked before because scalar result types are known to be legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140249 91177308-0d34-0410-b5e6-96231b3b80d8
assert(!"error message");
To:
assert(0 && "error message");
which is more consistant across the code base.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140234 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140228 91177308-0d34-0410-b5e6-96231b3b80d8
It happens (for example) when you want to have a dependency on the .so
with the specific version, like liblzma.so.1.0.0 or
libcrypto.so.0.9.8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140201 91177308-0d34-0410-b5e6-96231b3b80d8
The landing pad must accompany the invoke when it's extracted. However, if it
does, then the loop isn't properly extracted. I.e., the resulting extraction has
a loop in it. The extracted function is then extracted, etc. resulting in an
infinite loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140193 91177308-0d34-0410-b5e6-96231b3b80d8
This was only needed to locate llvm-gcc's installation directory when clang
falls back to run llvm-gcc for i386 kexts. As of clang svn r140187, we're
now just searching paths with several different Darwin versions on either
side of the current version, so this is no longer needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140188 91177308-0d34-0410-b5e6-96231b3b80d8
extract its associated landing pad block as well. However, that landing pad
block may have more than one predecessor. So split the landing pad block so that
individual landing pads have only one predecessor.
This type of transformation may produce a false positive with bugpoint.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140173 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change. The hook makes it explicit which patterns
require "special" handling. i.e. it self-documents tblgen
deficiencies. I plan to add verification in ExpandISelPseudos and
Thumb2SizeReduce to catch any missing hasPostISelHooks. Otherwise it's
too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140160 91177308-0d34-0410-b5e6-96231b3b80d8
Modified ARMISelLowering::AdjustInstrPostInstrSelection to handle the
full gamut of CPSR defs/uses including instructins whose "optional"
cc_out operand is not really optional. This allowed removal of the
hasPostISelHook to simplify the .td files and make the implementation
more robust.
Fixes rdar://10137436: sqlite3 miscompile
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140134 91177308-0d34-0410-b5e6-96231b3b80d8
extract the landing pad block. Otherwise, there will be a situation where the
invoke's unwind edge lands on a non-landing pad.
We also forbid the user from extracting the landing pad block by itself. Again,
this is not a valid transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140083 91177308-0d34-0410-b5e6-96231b3b80d8
yet legal according to comments in LegalizeDAG.cpp:227.
Memcpy nodes created for copying byval arguments are inserted before
CALLSEQ_START.
The two failing tests reported in PR10876 pass after applying this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140046 91177308-0d34-0410-b5e6-96231b3b80d8
dag-combine optimization to implement the ext-load efficiently (using shuffles).
For example the type <4 x i8> is stored in memory as i32, but it needs to
find its way into a <4 x i32> register. Previously we scalarized the memory
access, now we use shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139995 91177308-0d34-0410-b5e6-96231b3b80d8
maxps and maxpd). This broke the sse41-blend.ll testcase by causing
maxpd to be produced rather than a cmp+blend pair, which is the reason
I tweaked it. Gives a small speedup on doduc with dragonegg when the
GCC vectorizer is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139986 91177308-0d34-0410-b5e6-96231b3b80d8
are declared with load patterns. This fix the crash in PR10941. No testcases,
since a fold is triggered and then converted back to the register form
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139953 91177308-0d34-0410-b5e6-96231b3b80d8
This PR basically reports a problem where a crash in generated code
happened due to %rbp being clobbered:
pushq %rbp
movq %rsp, %rbp
....
vmovmskps %ymm12, %ebp
....
movq %rbp, %rsp
popq %rbp
ret
Since Eric's r123367 commit, the default stack alignment for x86 32-bit
has changed to be 16-bytes. Since then, the MaxStackAlignmentHeuristicPass
hasn't been really used, but with AVX it becomes useful again, since per
ABI compliance we don't always align the stack to 256-bit, but only when
there are 256-bit incoming arguments.
ReserveFP was only used by this pass, but there's no RA target hook that
uses getReserveFP() to check for the presence of FP (since nothing was
triggering the pass to run, the uses of getReserveFP() were removed
through time without being noticed). Change this pass to use
setForceFramePointer, which is properly called by MachineFunction
hasFP method.
The testcase is very big and dependent on RA, not sure if it's worth
adding to test/CodeGen/X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139939 91177308-0d34-0410-b5e6-96231b3b80d8
The leaveIntvAfter() function normally inserts a back-copy after the
requested instruction, making the back-copy kill the live range.
In spill mode, try to insert the back-copy before the last use instead.
That means the last use becomes the kill instead of the back-copy. This
lowers the register pressure because the last use can now redefine the
same register it was reading.
This will also improve compile time: The back-copy isn't a kill, so
hoisting it in hoistCopiesForSize() won't force a recomputation of the
source live range. Similarly, if the back-copy isn't hoisted by the
splitter, the spiller will not attempt hoisting it locally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139883 91177308-0d34-0410-b5e6-96231b3b80d8
If the source register is live after the copy being spilled, there is no
point to hoisting it. Hoisting inside a basic block only serves to
resolve interferences by shortening the live range of the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139882 91177308-0d34-0410-b5e6-96231b3b80d8
gold plugin is built with Large File Support (sizeof(off_t) == 64 on i686)
and the rest of LLVM is built w/o Large File Support
(sizeof(off_t) == 32 on i686) which corrupts the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139873 91177308-0d34-0410-b5e6-96231b3b80d8
When -split-spill-mode is enabled, spill hoisting is performed by
SplitKit instead of by InlineSpiller. This hidden command line option
is for testing the splitter spill mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139845 91177308-0d34-0410-b5e6-96231b3b80d8
The address size is specified by the compile unit associated with a line table, there is no global address size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139835 91177308-0d34-0410-b5e6-96231b3b80d8
take into consideration the presence of AVX. This change, together with
the SSEDomainFix enabled for AVX, makes AVX codegen to always (hopefully)
emit the same code as SSE for 128-bit vector ops. I don't
have a testcase for this, but AVX now beats SSE in performance for
128-bit ops in the majority of programas in the llvm testsuite
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139817 91177308-0d34-0410-b5e6-96231b3b80d8
Assembler private local symbols aren't legal targets of symbol attributes,
so issue a diagnostic for them.
Based on patch by Stepan Dyatkovskiy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139807 91177308-0d34-0410-b5e6-96231b3b80d8
Adjust counters when removing spill and reload instructions.
We still don't account for reloads being removed by eliminateDeadDefs().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139806 91177308-0d34-0410-b5e6-96231b3b80d8
If we see an EOF w/o a preceding end-of-line, return an EndOfStatement
token before returning the Eof token.
Based on patch by Stepan Dyatkovskiy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139798 91177308-0d34-0410-b5e6-96231b3b80d8
When traceSiblingValue() encounters a PHI-def value created by live
range splitting, don't look at all the predecessor blocks. That can be
very expensive in a complicated CFG.
Instead, consider that all the non-PHI defs jointly dominate all the
PHI-defs. Tracing directly to all the non-PHI defs is much faster that
zipping around in the CFG when there are many PHIs with many
predecessors.
This significantly improves compile time for indirectbr interpreters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139797 91177308-0d34-0410-b5e6-96231b3b80d8
Blocks with multiple PHI successors only need to go on the worklist
once. Use a SmallPtrSet to track the live-out blocks that have already
been handled. This is a lot faster than the two live range check we
would otherwise do.
Also stop recomputing hasPHIKill flags. Like RenumberValues(), it is
conservatively correct to leave them in, and they are not used for
anything important.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139792 91177308-0d34-0410-b5e6-96231b3b80d8
It does, after all.
RemoveCopyByCommutingDef rewrites the uses of one particular value
number in A. It doesn't know how to rewrite phi uses, so there can't be
any.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139787 91177308-0d34-0410-b5e6-96231b3b80d8
There is only one legitimate use remaining, in addIntervalsForSpills().
All other calls to hasPHIKill() are only used to update PHIKill flags.
The addIntervalsForSpills() function is part of the old spilling
framework, only used by linearscan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139783 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, let HasOtherReachingDefs() test for defs in B that overlap any
phi-defs in A as well. This test is slightly different, but almost
identical.
A perfectly precise test would only check those phi-defs in A that are
reachable from AValNo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139782 91177308-0d34-0410-b5e6-96231b3b80d8
The source live range is recomputed using shrinkToUses() which does
handle phis correctly. The hasPHIKill() condition was relevant in the
old days when ReMaterializeTrivialDef() tried to recompute the live
range itself.
The shrinkToUses() function will mark the original def as dead when no
more uses and phi kills remain. It is then removed by
runOnMachineFunction().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139781 91177308-0d34-0410-b5e6-96231b3b80d8
It is conservatively correct to keep the hasPHIKill flags, even after
deleting PHI-defs.
The calculation can be very expensive after taildup has created a
quadratic number of indirectbr edges in the CFG, and the hasPHIKill flag
isn't used for anything after RenumberValues().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139780 91177308-0d34-0410-b5e6-96231b3b80d8
An improper SlotIndex->VNInfo lookup was leading to unsafe copy removal.
Fixes PR10920 401.bzip2 miscompile with no IV rewrite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139765 91177308-0d34-0410-b5e6-96231b3b80d8
will ignore the erasedOnReboot option, and properly escape the
backslash in "C:\TEMP". Thanks to Aaron and Francois.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139755 91177308-0d34-0410-b5e6-96231b3b80d8
Clean up register list handling in general a bit to explicitly check things
like all the registers being from the same register class.
rdar://8883573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139707 91177308-0d34-0410-b5e6-96231b3b80d8
THe LRE_DidCloneVirtReg callback may be called with vitual registers
that RAGreedy doesn't even know about yet. In that case, there are no
data structures to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139702 91177308-0d34-0410-b5e6-96231b3b80d8
When a back-copy is hoisted to the nearest common dominator, keep
looking up the dominator tree for a less loopy dominator, and place the
back-copy there instead.
Don't do this when a single existing back-copy dominates all the others.
Assume the client knows what he is doing, and keep the dominating
back-copy.
This prevents us from hoisting back-copies into loops in most cases. If
a value is defined in a loop with multiple exits, we may still hoist
back-copies into that loop. That is the speed/size tradeoff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139698 91177308-0d34-0410-b5e6-96231b3b80d8
- Add TSFlags for the instruction formats. The idea here is to use
as much encoding as possible from getBinaryCodeForInstr, and having
TSFLags formats for that would make it easier to encode most part
of the instructions (since Mips encodings are pretty straightforward)
- Improve the mips mechanism for compilation callback
- Add Mips specific code for invalidating the instruction cache
- Next patch will address wrong tablegen encoding
Commit msg added by my own but the patch is from Sasa Stankovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139688 91177308-0d34-0410-b5e6-96231b3b80d8
alignment check for 256-bit classes more strict. There're no testcases
but we catch more folding cases for AVX while running single and multi
sources in the llvm testsuite.
Since some 128-bit AVX instructions have different number of operands
than their SSE counterparts, they are placed in different tables.
256-bit AVX instructions should also be added in the table soon. And
there a few more 128-bit versions to handled, which should come in
the following commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139687 91177308-0d34-0410-b5e6-96231b3b80d8
- Add enum SymbolType and function getSymbolType()
- Add function isGlobal() - it's returns true for symbols that can be used in another objects, such as library functions.
- Rename function getAddress() to getOffset() and add new function getAddress(), because currently getAddress() returns section offset of symbol first byte. new getAddress() return symbol address.
- Change usage SymbolRef::getAddress() to getOffset() in tools/llvm-nm and tools/llvm-objdump.
Patch by Danil Malyshev!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139683 91177308-0d34-0410-b5e6-96231b3b80d8
This is only one half of it, the part that caches address ranges from the DIEs when .debug_aranges is
not available will be ported soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139680 91177308-0d34-0410-b5e6-96231b3b80d8
#line directives with the needed support in the lexer. Next will be to build
a simple file/line# table mapping source SMLoc's for later use by diagnostics.
And the last step will be to get the diagnostics to use the mapping for file
and line numbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139669 91177308-0d34-0410-b5e6-96231b3b80d8
When a ParentVNI maps to multiple defs in a new interval, its live range
may still be derived directly from RegAssign by transferValues().
On the other hand, when instructions have been rematerialized or
hoisted, it may be necessary to completely recompute live ranges using
LiveRangeCalc::extend() to all uses.
Use a bit in the value map to indicate that a live range must be
recomputed. Rename markComplexMapped() to forceRecompute().
This fixes some live range verification errors when
-split-spill-mode=size hoists back-copies by recomputing source ranges
when RegAssign kills can't be moved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139660 91177308-0d34-0410-b5e6-96231b3b80d8
Whenever the complement interval is defined by multiple copies of the
same value, hoist those back-copies to the nearest common dominator.
This ensures that at most one copy is inserted per value in the
complement inteval, and no phi-defs are needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139651 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a new library to LLVM: libDebugInfo. It will provide debug information
parsing to LLVM. Much of the design and some of the code is taken from the LLDB project.
It also contains an llvm-dwarfdump tool that can dump the abbrevs and DIEs from an
object file. It can be used to write tests for DWARF input and output easily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139627 91177308-0d34-0410-b5e6-96231b3b80d8
It is an endian-aware helper that can read data from a StringRef. It will
come in handy for DWARF parsing. This class is inspired by LLDB's
DataExtractor, but is stripped down to the bare minimum needed for DWARF.
Comes with unit tests!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139626 91177308-0d34-0410-b5e6-96231b3b80d8
more strict about the alignment checking. This was found by inspection
and I don't have any testcases so far, although the llvm testsuite runs
without any problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139625 91177308-0d34-0410-b5e6-96231b3b80d8
This function is used to flag values where the complement interval may
overlap other intervals. Call it from overlapIntv, and use the flag to
fully recompute those live ranges in transferValues().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139612 91177308-0d34-0410-b5e6-96231b3b80d8
Three out of four clients prefer this interface which is consistent with
extendIntervalEndTo() and LiveRangeCalc::extend().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139604 91177308-0d34-0410-b5e6-96231b3b80d8
The complement interval may overlap the other intervals created, so use
a separate LiveRangeCalc instance to compute its live range.
A LiveRangeCalc instance can only be shared among non-overlapping
intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139603 91177308-0d34-0410-b5e6-96231b3b80d8
SplitKit will soon need two copies of these data structures, and the
algorithms will also be useful when LiveIntervalAnalysis becomes
independent of LiveVariables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139572 91177308-0d34-0410-b5e6-96231b3b80d8
Splitting a landing pad takes considerable care because of PHIs and other
nasties. The problem is that the jump table needs to jump to the landing pad
block. However, the landing pad block can be jumped to only by an invoke
instruction. So we clone the landingpad instruction into its own basic block,
have the invoke jump to there. The landingpad instruction's basic block's
successor is now the target for the jump table.
But because of PHI nodes, we need to create another basic block for the jump
table to jump to. This is definitely a hack, because the values for the PHI
nodes may not be defined on the edge from the jump table. But that's okay,
because the jump table is simply a construct to mimic what is happening in the
CFG. So the values are mysteriously there, even though there is no value for the
PHI from the jump table's edge (hence calling this a hack).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139545 91177308-0d34-0410-b5e6-96231b3b80d8
No tests; these changes aren't really interesting in the sense that the logic is the same for volatile and atomic.
I believe this completes all of the changes necessary for the optimizer to handle loads and stores correctly. I'm going to try and come up with some additional testing, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139533 91177308-0d34-0410-b5e6-96231b3b80d8
However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139528 91177308-0d34-0410-b5e6-96231b3b80d8
SplitKit always computes a complement live range to cover the places
where the original live range was live, but no explicit region has been
allocated.
Currently, the complement live range is created to be as small as
possible - it never overlaps any of the regions. This minimizes
register pressure, but if the complement is going to be spilled anyway,
that is not very important. The spiller will eliminate redundant
spills, and hoist others by making the spill slot live range overlap
some of the regions created by splitting. Stack slots are cheap.
This patch adds the interface to enable spill modes in SplitKit. In
spill mode, SplitKit will assume that the complement is going to spill,
so it will allow it to overlap regions in order to avoid back-copies.
By doing some of the spiller's work early, the complement live range
becomes simpler. In some cases, it can become much simpler because no
extra PHI-defs are required. This will speed up both splitting and
spilling.
This is only the interface to enable spill modes, no implementation yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139500 91177308-0d34-0410-b5e6-96231b3b80d8
Undo the changes from r139285 which added custom lowering to vselect.
Add tablegen lowering for vselect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139479 91177308-0d34-0410-b5e6-96231b3b80d8
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139454 91177308-0d34-0410-b5e6-96231b3b80d8
better.
Don't immediately give up when an add operation can't be trivially
sign/zero-extended within a loop. If it has NSW/NUW flags, generate a
new expression with sign extended (non-recurrent) operand. As before,
if SCEV says that all sign extends are loop invariant, then we can
widen the operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139453 91177308-0d34-0410-b5e6-96231b3b80d8
such.
I'm doing this now for completeness because I can't think of/remember
any reason that it was left out. I'm not sure it will help anything,
but if we don't do it we need to explain why in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139450 91177308-0d34-0410-b5e6-96231b3b80d8