at each public stop to improve performance a bit. Most of the
information lldb needed was already in the jThreadsInfo response;
complete that information and catch a few cases where we could still
fall back to getting the information via discrete memory reads.
debugserver adds 'associated_with_dispatch_queue' and 'dispatch_queue_t
keys to the jThreadsInfo response for all the threads. lldb needs the
dispatch_queue_t value. And associated_with_dispatch_queue helps to
identify which threads definitively don't have any queue information so
lldb doesn't try to do memory reads to get that information just because
it was absent in the jThreadsInfo response.
Remove the queue information from the questionmark (T) packet. We'll
get the information for all threads via the jThreadsInfo response -
sending the information for the stopping thread (on all the private
stops, plus the less frequent public stop) was unnecessary information
being sent over the wire.
SystemRuntimeMacOSX will try to get information about queues by asking
the Threads for them, instead of reading memory.
ProcessGDBRemote changes to recognize the new keys being sent in the
jThreadsInfo response. Changes to ThreadGDBRemote to track the new
information. Also, when a thread is marked as definitively not
associated with a libdispatch queue, don't fall back to the system
runtime to try memory reads to find the queue name / kind / ID etc.
<rdar://problem/23309359>
llvm-svn: 257453
"thread-pcs" key is added to the T (questionmark) packet in
gdb-remote protocol so that lldb doesn't need to query the
pc values of every thread before it resumes a process.
The only odd part with this is that I'm sending the pc
values in big endian order, so we need to know the endianness
of the remote process before we can use them. All other
register values in gdb-remote protocol are sent in native-endian
format so this requirement doesn't exist. This addition is a
performance enhancement -- lldb will fall back to querying the
pc of each thread individually if it needs to -- so when
we don't have the byte order for the process yet, we don't
use these values. Practically speaking, the only way I've
been able to elicit this condition is for the first
T packet when we attach to a process.
<rdar://problem/21963031>
llvm-svn: 255942
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
A "qSymbol::" is sent when shared libraries have been loaded by hooking into the Process::ModulesDidLoad() function from within ProcessGDBRemote. This function was made virtual so that the ProcessGDBRemote version is called, which then first calls the Process::ModulesDidLoad(), and then it queries for any symbol lookups that the remote GDB server might want to do.
This allows debugserver to request the "dispatch_queue_offsets" symbol so that it can read the queue name, queue kind and queue serial number and include this data as part of the stop reply packet. Previously each thread would have to do 3 memory reads in order to read the queue name.
This is part of reducing the number of packets that are sent between LLDB and the remote GDB server.
<rdar://problem/21494354>
llvm-svn: 240466
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
currently associated with a given thread, on relevant targets.
Change the queue detection code to verify that the queues
associated with all live threads are included in the list.
<rdar://problem/16411314>
llvm-svn: 207160
libldi library to collect extended backtrace information; switch
to the libBacktraceRecording library and its APIs. Complete the
work of adding QueueItems to Queues and allow for the QueueItems
to be interrogated about their extended backtraces in turn.
There's still cleanup and documentation to do on this code but the
code is functional and I it's a good time to get the work-in-progress
checked in.
<rdar://problem/15314027>
llvm-svn: 200822
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
queue name out of ProcessGDBRemote and in to the Platform
plugin, specifically PlatformDarwin.
Also add a Platform method to translate a dispatch_quaddr
to a QueueID, and a Thread::GetQueueID().
I'll add an SBThread::GetQueueID() next.
llvm-svn: 192949
by appending the thread ID to the test packet when
debugserver requires it.
This allows register writing (and, by extension,
expressions) to work on Mac OS X.
llvm-svn: 190007
Some stubs only support g/G packets for registers.
This change makes sure that we check if remote stub supports 'p' packet before using it.
llvm-svn: 189576
namespace lldb_private {
class Thread
{
virtual lldb::StopInfoSP
GetPrivateStopReason() = 0;
};
}
To not be virtual. The lldb_private::Thread now handles the correct caching and will call a new pure virtual function:
namespace lldb_private {
class Thread
{
virtual bool
CalculateStopInfo() = 0;
}
}
This function must be overridden by thead lldb_private::Thread subclass and the only thing it needs to do is to set the Thread::StopInfo() with the current stop reason and return true, or return false if there is no stop reason. The lldb_private::Thread class will take care of calling this function only when it is required. This allows lldb_private::Thread subclasses to be a bit simpler and not all need to duplicate the cache and invalidation settings.
Also renamed:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopReason();
To:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopInfo();
Also cleaned up a case where the ThreadPlanStepOverBreakpoint might not re-set its breakpoint if the thread disappears (which was happening due to a bug when using the OperatingSystem plug-ins with memory threads and real threads).
llvm-svn: 181501
while we develop a better understanding of how to manage the thread lists in a platform-independant fashion.
Reviewed by: Daniel Malea
llvm-svn: 181323
This checkin aims to fix this. The process now has two thread lists: a real thread list for threads that are created by the lldb_private::Process subclass, and the user visible threads. The user visible threads are the same as the real threas when no OS plug-in in used. But when an OS plug-in is used, the user thread can be a combination of real and "memory" threads. Real threads can be placed inside of memory threads so that a thread appears to be different, but is still controlled by the actual real thread. When the thread list needs updating, the lldb_private::Process class will call the: lldb_private::Process::UpdateThreadList() function with the old real thread list, and the function is expected to fill in the new real thread list with the current state of the process. After this function, the process will check if there is an OS plug-in being used, and if so, it will give the old user thread list, the new real thread list and the OS plug-in will create the new user thread list from both of these lists. If there is no OS plug-in, the real thread list is the user thread list.
These changes keep the lldb_private::Process subclasses clean and no changes are required.
llvm-svn: 181091
<rdar://problem/13723772>
Modified the lldb_private::Thread to work much better with the OperatingSystem plug-ins. Operating system plug-ins can now return have a "core" key/value pair in each thread dictionary for the OperatingSystemPython plug-ins which allows the core threads to be contained with memory threads. It also allows these memory threads to be stepped, resumed, and controlled just as if they were the actual backing threads themselves.
A few things are introduced:
- lldb_private::Thread now has a GetProtocolID() method which returns the thread protocol ID for a given thread. The protocol ID (Thread::GetProtocolID()) is usually the same as the thread id (Thread::GetID()), but it can differ when a memory thread has its own id, but is backed by an actual API thread.
- Cleaned up the Thread::WillResume() code to do the mandatory parts in Thread::ShouldResume(), and let the thread subclasses override the Thread::WillResume() which is now just a notification.
- Cleaned up ClearStackFrames() implementations so that fewer thread subclasses needed to override them
- Changed the POSIXThread class a bit since it overrode Thread::WillResume(). It is doing the wrong thing by calling "Thread::SetResumeState()" on its own, this shouldn't be done by thread subclasses, but the current code might rely on it so I left it in with a TODO comment with an explanation.
llvm-svn: 180886
Made some fixes to the OperatingSystemPython class:
- If any thread dictionary contains any "core=N" key/value pairs then the threads obtained from the lldb_private::Process itself will be placed inside the ThreadMemory threads and will be used to get the information for a thread.
- Cleaned up all the places where a thread inside a thread was causing problems
llvm-svn: 179405
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
thread plan. In order to get the return value, you can call:
void
ThreadPlanCallFunction::RequestReturnValue (lldb::ValueSP &return_value_sp);
This registers a shared pointer to a return value that will get filled in if
everything goes well. After the thread plan is run the return value will be
extracted for you.
Added an ifdef to be able to switch between the LLVM MCJIT and the standand JIT.
We currently have the standard JIT selected because we have some work to do to
get the MCJIT fuctioning properly.
Added the ability to call functions with 6 argument in the x86_64 ABI.
Added the ability for GDBRemoteCommunicationClient to detect if the allocate
and deallocate memory packets are supported and to not call allocate memory
("_M") or deallocate ("_m") if we find they aren't supported.
Modified the ProcessGDBRemote::DoAllocateMemory(...) and ProcessGDBRemote::DoDeallocateMemory(...)
to be able to deal with the allocate and deallocate memory packets not being
supported. If they are not supported, ProcessGDBRemote will switch to calling
"mmap" and "munmap" to allocate and deallocate memory instead using our
trivial function call support.
Modified the "void ProcessGDBRemote::DidLaunchOrAttach()" to correctly ignore
the qHostInfo triple information if any was specified in the target. Currently
if the target only specifies an architecture when creating the target:
(lldb) target create --arch i386 a.out
Then the vendor, os and environemnt will be adopted by the target.
If the target was created with any triple that specifies more than the arch:
(lldb) target create --arch i386-unknown-unknown a.out
Then the target will maintain its triple and not adopt any new values. This
can be used to help force bare board debugging where the dynamic loader for
static files will get used and users can then use "target modules load ..."
to set addressses for any files that are desired.
Added back some convenience functions to the lldb_private::RegisterContext class
for writing registers with unsigned values. Also made all RegisterContext
constructors explicit to make sure we know when an integer is being converted
to a RegisterValue.
llvm-svn: 131370
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
Switch the EmulateInstruction to use the standard RegisterInfo structure
that is defined in the lldb private types intead of passing the reg kind and
reg num everywhere. EmulateInstruction subclasses also need to provide
RegisterInfo structs given a reg kind and reg num. This eliminates the need
for the GetRegisterName() virtual function and allows more complete information
to be passed around in the read/write register callbacks. Subclasses should
always provide RegiterInfo structs with the generic register info filled in as
well as at least one kind of register number in the RegisterInfo.kinds[] array.
llvm-svn: 130256
are defined as enumerations. Current bits include:
eEmulateInstructionOptionAutoAdvancePC
eEmulateInstructionOptionIgnoreConditions
Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:
virtual bool
SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;
Where instruction types are defined as:
//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------
typedef enum InstructionType
{
eInstructionTypeAny, // Support for any instructions at all (at least one)
eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp
eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer
eInstructionTypeAll // All instructions of any kind
} InstructionType;
This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.
Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.
The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.
Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file:
source/Utility/ARM_DWARF_Registers.c
Took some of plug-ins out of the lldb_private namespace.
llvm-svn: 130189
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
member variable (m_packet_timeout which is a value in seconds). This value is
then used for all packets sent to/from the remote GDB server.
llvm-svn: 127392
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
ArchDefaultUnwindPlan plug-in interfaces are now cached per architecture
instead of being leaked for every frame.
Split the ArchDefaultUnwindPlan_x86 into ArchDefaultUnwindPlan_x86_64 and
ArchDefaultUnwindPlan_i386 interfaces.
There were sporadic crashes that were due to something leaking or being
destroyed when doing stack crawls. This patch should clear up these issues.
llvm-svn: 125541
are supported by the remote GDB target. We can also now deal with the lack of
vCont support and send packets that the remote GDB stub can use. We also error
out of the continue if LLDB tries to do something too complex when vCont isn't
supported.
llvm-svn: 125433
a method:
void RegisterContext::InvalidateIfNeeded (bool force);
Each time this function is called, when "force" is false, it will only call
the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if
the register context's stop ID doesn't match that of the process. When the
stop ID doesn't match, or "force" is true, the base class will clear its
cached registers and the RegisterContext will update its stop ID to match
that of the process. This helps make it easier to correctly flush the register
context (possibly from multiple locations depending on when and where new
registers are availabe) without inadvertently clearing the register cache
when it doesn't need to be.
Modified the ProcessGDBRemote plug-in to be much more efficient when it comes
to:
- caching the expedited registers in the stop reply packets (we were ignoring
these before and it was causing us to read at least three registers every
time we stopped that were already supplied in the stop reply packet).
- When a thread has no stop reason, don't keep asking for the thread stopped
info. Prior to this fix we would continually send a qThreadStopInfo packet
over and over when any thread stop info was requested. We now note the stop
ID that the stop info was requested for and avoid multiple requests.
Cleaned up some of the expression code to not look for ClangExpressionVariable
objects up by name since they are now shared pointers and we can just look for
the exact pointer match and avoid possible errors.
Fixed an bug in the ValueObject code that would cause children to not be
displayed.
llvm-svn: 123127
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976