llvm/lib/Target/ARM/ARMInstrInfo.td

289 lines
12 KiB
TableGen
Raw Normal View History

//===- ARMInstrInfo.td - Target Description for ARM Target ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the "Instituto Nokia de Tecnologia" and
// is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
// Address operands
def op_addr_mode1 : Operand<iPTR> {
let PrintMethod = "printAddrMode1";
let NumMIOperands = 3;
let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
}
def memri : Operand<iPTR> {
let PrintMethod = "printMemRegImm";
let NumMIOperands = 2;
let MIOperandInfo = (ops i32imm, ptr_rc);
}
// Define ARM specific addressing mode.
//Addressing Mode 1: data processing operands
def addr_mode1 : ComplexPattern<iPTR, 3, "SelectAddrMode1", [imm, sra, shl, srl],
[]>;
//register plus/minus 12 bit offset
def iaddr : ComplexPattern<iPTR, 2, "SelectAddrRegImm", [frameindex], []>;
//register plus scaled register
//def raddr : ComplexPattern<iPTR, 2, "SelectAddrRegReg", [], []>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
class InstARM<dag ops, string asmstr, list<dag> pattern> : Instruction {
let Namespace = "ARM";
dag OperandList = ops;
let AsmString = asmstr;
let Pattern = pattern;
}
def brtarget : Operand<OtherVT>;
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
def CCOp : Operand<i32>;
def SDT_ARMCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeq,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeq,
[SDNPHasChain, SDNPOutFlag]>;
def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisInt<0>]>;
def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def retflag : SDNode<"ARMISD::RET_FLAG", SDTRet,
[SDNPHasChain, SDNPOptInFlag]>;
def SDTarmselect : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisVT<2, i32>]>;
def armselect : SDNode<"ARMISD::SELECT", SDTarmselect, [SDNPInFlag, SDNPOutFlag]>;
def SDTarmfmstat : SDTypeProfile<0, 0, []>;
def armfmstat : SDNode<"ARMISD::FMSTAT", SDTarmfmstat, [SDNPInFlag, SDNPOutFlag]>;
def SDTarmbr : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def armbr : SDNode<"ARMISD::BR", SDTarmbr, [SDNPHasChain, SDNPInFlag]>;
def SDTVoidBinOp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def armcmp : SDNode<"ARMISD::CMP", SDTVoidBinOp, [SDNPOutFlag]>;
def armcmpe : SDNode<"ARMISD::CMPE", SDTVoidBinOp, [SDNPOutFlag]>;
def armfsitos : SDNode<"ARMISD::FSITOS", SDTUnaryOp>;
def armftosis : SDNode<"ARMISD::FTOSIS", SDTUnaryOp>;
def armfsitod : SDNode<"ARMISD::FSITOD", SDTUnaryOp>;
def armftosid : SDNode<"ARMISD::FTOSID", SDTUnaryOp>;
def armfuitos : SDNode<"ARMISD::FUITOS", SDTUnaryOp>;
def armftouis : SDNode<"ARMISD::FTOUIS", SDTUnaryOp>;
def armfuitod : SDNode<"ARMISD::FUITOD", SDTUnaryOp>;
def armftouid : SDNode<"ARMISD::FTOUID", SDTUnaryOp>;
def SDTarmfmrrd : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisFP<2>]>;
def armfmrrd : SDNode<"ARMISD::FMRRD", SDTarmfmrrd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def SDTarmfmdrr : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def armfmdrr : SDNode<"ARMISD::FMDRR", SDTarmfmdrr, []>;
def ADJCALLSTACKUP : InstARM<(ops i32imm:$amt),
"!ADJCALLSTACKUP $amt",
[(callseq_end imm:$amt)]>, Imp<[R13],[R13]>;
def ADJCALLSTACKDOWN : InstARM<(ops i32imm:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start imm:$amt)]>, Imp<[R13],[R13]>;
let isReturn = 1 in {
def bx: InstARM<(ops), "bx r14", [(retflag)]>;
}
let Defs = [R0, R1, R2, R3, R14] in {
def bl: InstARM<(ops i32imm:$func, variable_ops), "bl $func", [(ARMcall tglobaladdr:$func)]>;
}
def ldr : InstARM<(ops IntRegs:$dst, memri:$addr),
"ldr $dst, $addr",
[(set IntRegs:$dst, (load iaddr:$addr))]>;
def str : InstARM<(ops IntRegs:$src, memri:$addr),
"str $src, $addr",
[(store IntRegs:$src, iaddr:$addr)]>;
def MOV : InstARM<(ops IntRegs:$dst, op_addr_mode1:$src),
"mov $dst, $src", [(set IntRegs:$dst, addr_mode1:$src)]>;
def ADD : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"add $dst, $a, $b",
[(set IntRegs:$dst, (add IntRegs:$a, addr_mode1:$b))]>;
def ADCS : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"adcs $dst, $a, $b",
[(set IntRegs:$dst, (adde IntRegs:$a, addr_mode1:$b))]>;
def ADDS : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"adds $dst, $a, $b",
[(set IntRegs:$dst, (addc IntRegs:$a, addr_mode1:$b))]>;
// "LEA" forms of add
def lea_addri : InstARM<(ops IntRegs:$dst, memri:$addr),
"add $dst, ${addr:arith}",
[(set IntRegs:$dst, iaddr:$addr)]>;
def SUB : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"sub $dst, $a, $b",
[(set IntRegs:$dst, (sub IntRegs:$a, addr_mode1:$b))]>;
def SBCS : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"sbcs $dst, $a, $b",
[(set IntRegs:$dst, (sube IntRegs:$a, addr_mode1:$b))]>;
def SUBS : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"subs $dst, $a, $b",
[(set IntRegs:$dst, (subc IntRegs:$a, addr_mode1:$b))]>;
def AND : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"and $dst, $a, $b",
[(set IntRegs:$dst, (and IntRegs:$a, addr_mode1:$b))]>;
def EOR : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"eor $dst, $a, $b",
[(set IntRegs:$dst, (xor IntRegs:$a, addr_mode1:$b))]>;
def ORR : InstARM<(ops IntRegs:$dst, IntRegs:$a, op_addr_mode1:$b),
"orr $dst, $a, $b",
[(set IntRegs:$dst, (or IntRegs:$a, addr_mode1:$b))]>;
let isTwoAddress = 1 in {
def movcond : InstARM<(ops IntRegs:$dst, IntRegs:$false,
op_addr_mode1:$true, CCOp:$cc),
"mov$cc $dst, $true",
[(set IntRegs:$dst, (armselect addr_mode1:$true,
IntRegs:$false, imm:$cc))]>;
}
def MUL : InstARM<(ops IntRegs:$dst, IntRegs:$a, IntRegs:$b),
"mul $dst, $a, $b",
[(set IntRegs:$dst, (mul IntRegs:$a, IntRegs:$b))]>;
def bcond : InstARM<(ops brtarget:$dst, CCOp:$cc),
"b$cc $dst",
[(armbr bb:$dst, imm:$cc)]>;
def b : InstARM<(ops brtarget:$dst),
"b $dst",
[(br bb:$dst)]>;
def cmp : InstARM<(ops IntRegs:$a, op_addr_mode1:$b),
"cmp $a, $b",
[(armcmp IntRegs:$a, addr_mode1:$b)]>;
// Floating Point Compare
def fcmps : InstARM<(ops FPRegs:$a, FPRegs:$b),
"fcmps $a, $b",
[(armcmp FPRegs:$a, FPRegs:$b)]>;
def fcmpes : InstARM<(ops FPRegs:$a, FPRegs:$b),
"fcmpes $a, $b",
[(armcmpe FPRegs:$a, FPRegs:$b)]>;
def fcmped : InstARM<(ops DFPRegs:$a, DFPRegs:$b),
"fcmped $a, $b",
[(armcmpe DFPRegs:$a, DFPRegs:$b)]>;
def fcmpd : InstARM<(ops DFPRegs:$a, DFPRegs:$b),
"fcmpd $a, $b",
[(armcmp DFPRegs:$a, DFPRegs:$b)]>;
// Floating Point Conversion
// We use bitconvert for moving the data between the register classes.
// The format conversion is done with ARM specific nodes
def FMSR : InstARM<(ops FPRegs:$dst, IntRegs:$src),
"fmsr $dst, $src", [(set FPRegs:$dst, (bitconvert IntRegs:$src))]>;
def FMRS : InstARM<(ops IntRegs:$dst, FPRegs:$src),
"fmrs $dst, $src", [(set IntRegs:$dst, (bitconvert FPRegs:$src))]>;
def FMRRD : InstARM<(ops IntRegs:$i0, IntRegs:$i1, DFPRegs:$src),
"fmrrd $i0, $i1, $src", [(armfmrrd IntRegs:$i0, IntRegs:$i1, DFPRegs:$src)]>;
def FMDRR : InstARM<(ops DFPRegs:$dst, IntRegs:$i0, IntRegs:$i1),
"fmdrr $dst, $i0, $i1", [(set DFPRegs:$dst, (armfmdrr IntRegs:$i0, IntRegs:$i1))]>;
def FSITOS : InstARM<(ops FPRegs:$dst, FPRegs:$src),
"fsitos $dst, $src", [(set FPRegs:$dst, (armfsitos FPRegs:$src))]>;
def FTOSIS : InstARM<(ops FPRegs:$dst, FPRegs:$src),
"ftosis $dst, $src", [(set FPRegs:$dst, (armftosis FPRegs:$src))]>;
def FSITOD : InstARM<(ops DFPRegs:$dst, FPRegs:$src),
"fsitod $dst, $src", [(set DFPRegs:$dst, (armfsitod FPRegs:$src))]>;
def FTOSID : InstARM<(ops FPRegs:$dst, DFPRegs:$src),
"ftosid $dst, $src", [(set FPRegs:$dst, (armftosid DFPRegs:$src))]>;
def FUITOS : InstARM<(ops FPRegs:$dst, FPRegs:$src),
"fuitos $dst, $src", [(set FPRegs:$dst, (armfuitos FPRegs:$src))]>;
def FTOUIS : InstARM<(ops FPRegs:$dst, FPRegs:$src),
"ftouis $dst, $src", [(set FPRegs:$dst, (armftouis FPRegs:$src))]>;
def FUITOD : InstARM<(ops DFPRegs:$dst, FPRegs:$src),
"fuitod $dst, $src", [(set DFPRegs:$dst, (armfuitod FPRegs:$src))]>;
def FTOUID : InstARM<(ops FPRegs:$dst, DFPRegs:$src),
"ftouid $dst, $src", [(set FPRegs:$dst, (armftouid DFPRegs:$src))]>;
def FCVTDS : InstARM<(ops DFPRegs:$dst, FPRegs:$src),
"fcvtds $dst, $src", [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
def FCVTSD : InstARM<(ops FPRegs:$dst, DFPRegs:$src),
"fcvtsd $dst, $src", [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
def FMSTAT : InstARM<(ops ), "fmstat", [(armfmstat)]>;
// Floating Point Arithmetic
def FADDS : InstARM<(ops FPRegs:$dst, FPRegs:$a, FPRegs:$b),
"fadds $dst, $a, $b",
[(set FPRegs:$dst, (fadd FPRegs:$a, FPRegs:$b))]>;
def FADDD : InstARM<(ops DFPRegs:$dst, DFPRegs:$a, DFPRegs:$b),
"faddd $dst, $a, $b",
[(set DFPRegs:$dst, (fadd DFPRegs:$a, DFPRegs:$b))]>;
def FSUBS : InstARM<(ops FPRegs:$dst, FPRegs:$a, FPRegs:$b),
"fsubs $dst, $a, $b",
[(set FPRegs:$dst, (fsub FPRegs:$a, FPRegs:$b))]>;
def FSUBD : InstARM<(ops DFPRegs:$dst, DFPRegs:$a, DFPRegs:$b),
"fsubd $dst, $a, $b",
[(set DFPRegs:$dst, (fsub DFPRegs:$a, DFPRegs:$b))]>;
def FMULS : InstARM<(ops FPRegs:$dst, FPRegs:$a, FPRegs:$b),
"fmuls $dst, $a, $b",
[(set FPRegs:$dst, (fmul FPRegs:$a, FPRegs:$b))]>;
def FMULD : InstARM<(ops DFPRegs:$dst, DFPRegs:$a, DFPRegs:$b),
"fmuld $dst, $a, $b",
[(set DFPRegs:$dst, (fmul DFPRegs:$a, DFPRegs:$b))]>;
// Floating Point Load
def FLDS : InstARM<(ops FPRegs:$dst, IntRegs:$addr),
"flds $dst, $addr",
[(set FPRegs:$dst, (load IntRegs:$addr))]>;
def FLDD : InstARM<(ops DFPRegs:$dst, IntRegs:$addr),
"fldd $dst, $addr",
[(set DFPRegs:$dst, (load IntRegs:$addr))]>;