DAGCombiner could fold (truncate (load)) -> smaller load if the original
load was the width of the truncation result or wider. This patch extends
it to handle cases where the original load was narrower (and so the
extension type stays the same).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197030 91177308-0d34-0410-b5e6-96231b3b80d8
This hook reverses the order of assignment for local live ranges. This
will generally allocate shorter local live ranges first. For targets with
many registers, this could reduce regalloc compile time by a large
factor. It should still achieve optimal coloring; however, it can change
register eviction decisions. It is disabled by default for two reasons:
(1) Top-down allocation is simpler and easier to debug for targets that
don't benefit from reversing the order.
(2) Bottom-up allocation could result in poor evicition decisions on some
targets affecting the performance of compiled code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197001 91177308-0d34-0410-b5e6-96231b3b80d8
The combination of inline asm, stack realignment, and dynamic allocas
turns out to be too common to reject out of hand.
ASan inserts empy inline asm fragments and uses aligned allocas.
Compiling any trivial function containing a dynamic alloca with ASan is
enough to trigger the check.
XFAIL the test cases that would be miscompiled and add one that uses the
relevant functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196986 91177308-0d34-0410-b5e6-96231b3b80d8
It was failing because ASan was adding all of the following to one
function:
- dynamic alloca
- stack realignment
- inline asm
This patch avoids making the static alloca dynamic when coverage is
used.
ASan should probably not be inserting empty inline asm blobs to inhibit
duplicate tail elimination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196973 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196939 91177308-0d34-0410-b5e6-96231b3b80d8
Most users would be surprised if "isCOFF" and "isMachO" were simultaneously
true, unless they'd put the compiler in a box with a gun attached to a photon
detector.
This makes sure precisely one of the three formats is true for any triple and
simplifies some target logic based on that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196934 91177308-0d34-0410-b5e6-96231b3b80d8
The docstrings were describing an older interface that has been replaced with
functions.
Also describe the performance characteristics of FindProgramByName() and
ExecuteAndWait() explaining when it's best to avoid them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196932 91177308-0d34-0410-b5e6-96231b3b80d8
immediately after SSE scalar fp instructions like addss or mulss.
Added patterns to select SSE scalar fp arithmetic instructions from a scalar
fp operation followed by a blend.
For example, given the following code:
__m128 foo(__m128 A, __m128 B) {
A[0] += B[0];
return A;
}
previously we generated:
addss %xmm0, %xmm1
movss %xmm1, %xmm0
now we generate:
addss %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196925 91177308-0d34-0410-b5e6-96231b3b80d8
Save S2(reg 18) only when we are calling floating point stubs that
have a return value of float or complex. Some more work to make this
better but this is the first step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196921 91177308-0d34-0410-b5e6-96231b3b80d8
Defaulting to iOS 3.0 when LLVM has to guess the version is no longer a useful
option and can give surprising results (like tail calls being disabled).
5.0 seems like a reasonable compromise as a platform that's still interesting
to some people.
rdar://problem/15567348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196912 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196906 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196905 91177308-0d34-0410-b5e6-96231b3b80d8
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196876 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT needs to be able to run in hostile environments, even when PWD
is invalid. There's no need to crash MCJIT in this case.
The obvious fix is to simply leave MCContext's CompilationDir empty
when PWD can't be determined. This way, MCJIT clients,
and other clients that link with LLVM don’t need a valid working directory.
If we do want to guarantee valid CompilationDir, that should be done
only for clients of getCompilationDir(). This is as simple as checking
for an empty string.
The only current use of getCompilationDir is EmitGenDwarfInfo, which
won’t conceivably run with an invalid working dir. However, in the
purely hypothetically and untestable case that this happens, the
AT_comp_dir will be omitted from the compilation_unit DIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196874 91177308-0d34-0410-b5e6-96231b3b80d8