switches) into a switch, and sink them into a dispatch function that can
return the result rather than awkward variable setting with breaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212166 91177308-0d34-0410-b5e6-96231b3b80d8
It is not safe to negate the smallest signed integer, doing so yields
the same number back.
This fixes PR20186.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212164 91177308-0d34-0410-b5e6-96231b3b80d8
Based on the support for .req on ARM. The aarch64 variant has to keep track if
the alias register was a vector register (v0-31) or a general purpose or
VFP/Advanced SIMD ([bhsdq]0-31) register.
Patch by Janne Grunau!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212161 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't add any information for methods in the VectorLegalizer
class that clearly take SDAG operations to legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212157 91177308-0d34-0410-b5e6-96231b3b80d8
Clang-cl supports MSVC-style RTTI now, and we can even compile
typeid(...) with /GR-. Just don't instantiate std::function with a
polymorphic type, or bad things will happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212148 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise they get freed and the implicit "isa<XYZ>" tests following
turn out badly (at least under sanitizers).
Also corrects the ordering of unordered atomic stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212136 91177308-0d34-0410-b5e6-96231b3b80d8
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212135 91177308-0d34-0410-b5e6-96231b3b80d8
On targets without cmpxchg16b or cmpxchg8b, the borderline atomic
operations were slipping through the gaps.
X86AtomicExpand.cpp was delegating to ISelLowering. Generic
ISelLowering was delegating to X86ISelLowering and X86ISelLowering was
asserting. The correct behaviour is to expand to a libcall, preferably
in generic ISelLowering.
This can be achieved by X86ISelLowering deciding it doesn't want the
faff after all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212134 91177308-0d34-0410-b5e6-96231b3b80d8
This patch reduces the stack memory consumption of the InstCombine
function "isOnlyCopiedFromConstantGlobal() ", that in certain conditions
could overflow the stack because of excessive recursiveness.
For example, in a case like this:
%0 = alloca [50025 x i32], align 4
%1 = getelementptr inbounds [50025 x i32]* %0, i64 0, i64 0
store i32 0, i32* %1
%2 = getelementptr inbounds i32* %1, i64 1
store i32 1, i32* %2
%3 = getelementptr inbounds i32* %2, i64 1
store i32 2, i32* %3
%4 = getelementptr inbounds i32* %3, i64 1
store i32 3, i32* %4
%5 = getelementptr inbounds i32* %4, i64 1
store i32 4, i32* %5
%6 = getelementptr inbounds i32* %5, i64 1
store i32 5, i32* %6
...
This piece of code crashes llvm when trying to apply instcombine on
desktop. On embedded devices this could happen with a much lower limit
of recursiveness. Some instructions (getelementptr and bitcasts) make
the function recursively call itself on their uses, which is what makes
the example above consume so much stack (it becomes a recursive
depth-first tree visit with a very big depth).
The patch changes the algorithm to be semantically equivalent, but
iterative instead of recursive and the visiting order to be from a
depth-first visit to a breadth-first visit (visit all the instructions
of the current level before the ones of the next one).
Now if a lot of memory is required a heap allocation is done instead of
the the stack allocation, avoiding the possible crash.
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4355
Patch by Marcello Maggioni! We don't generally commit large stress test
that look for out of memory conditions, so I didn't request that one be
added to the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212133 91177308-0d34-0410-b5e6-96231b3b80d8
This macro is sometimes defined manually but isn't (and doesn't need to be) in
llvm-config.h so shouldn't appear in the headers, likewise NDEBUG.
Instead switch them over to LLVM_DUMP_METHOD on the definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212130 91177308-0d34-0410-b5e6-96231b3b80d8
Matching behavior with DeadArgumentElimination (and leveraging some
now-common infrastructure), keep track of the function from debug info
metadata if arguments are promoted.
This may produce interesting debug info - since the arguments may be
missing or of different types... but at least backtraces, inlining, etc,
will be correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212128 91177308-0d34-0410-b5e6-96231b3b80d8
Update DeadArgumentElimintation to use this, with the intent of reusing
the functionality for ArgumentPromotion as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212122 91177308-0d34-0410-b5e6-96231b3b80d8
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212119 91177308-0d34-0410-b5e6-96231b3b80d8
For now I only updated the _alt variants. The main variants are used by
codegen and that will need a bit more work to trigger.
<rdar://problem/17492620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212114 91177308-0d34-0410-b5e6-96231b3b80d8
Adding a writemask variant would require a third asm string to be passed to
the template. Generate the AsmString in the template instead.
No change in X86.td.expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212113 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212088, which is causing a number of spec
failures. Will provide reduced test cases shortly.
PR20057
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212109 91177308-0d34-0410-b5e6-96231b3b80d8
to select the slice out of a Mach-O universal file. This also includes
support for -arch all, selecting the host architecture by default from
a universal file and checking if -arch is used with a standard Mach-O
it matches that architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212108 91177308-0d34-0410-b5e6-96231b3b80d8
There were transforms whose *intent* was to downgrade the linkage of
external objects to have internal linkage.
However, it fired on things with private linkage as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212104 91177308-0d34-0410-b5e6-96231b3b80d8
This is a small targeted fix for pr20119. The code needs quiet a bit of
refactoring and I added some FIXMEs about it, but I want to get the testcase
passing first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212101 91177308-0d34-0410-b5e6-96231b3b80d8
copies.
This patch extends the peephole optimization introduced in r190713 to produce
register-coalescer friendly copies when possible.
This extension taught the existing cross-bank copy optimization how to deal
with the instructions that generate cross-bank copies, i.e., insert_subreg,
extract_subreg, reg_sequence, and subreg_to_reg.
E.g.
b = insert_subreg e, A, sub0 <-- cross-bank copy
...
C = copy b.sub0 <-- cross-bank copy
Would produce the following code:
b = insert_subreg e, A, sub0 <-- cross-bank copy
...
C = copy A <-- same-bank copy
This patch also introduces a new helper class for that: ValueTracker.
This class implements the logic to look through the copy related instructions
and get the related source.
For now, the advanced rewriting is disabled by default as we are lacking the
semantic on target specific instructions to catch the motivating examples.
Related to <rdar://problem/12702965>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212100 91177308-0d34-0410-b5e6-96231b3b80d8
By default, no functionality change.
Before evicting a local variable, this heuristic tries to find another (set of)
local(s) that can be reassigned to a free color.
In some extreme cases (large basic blocks with tons of local variables), the
compilation time is dominated by the local interference checks that this
heuristic must perform, with no code gen gain.
E.g., the motivating example takes 4 minutes to compile with this heuristic, 12
seconds without.
Improving the situation will likely require to make drastic changes to the
register allocator and/or the interference check framework.
For now, provide this flag to better understand the impact of that heuristic.
<rdar://problem/17444599>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212099 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212085.
This breaks the sanitizer bot... & I thought I'd tried pretty hard not
to do that. Guess I need to try harder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212089 91177308-0d34-0410-b5e6-96231b3b80d8
ForceInterpreter=false shouldn't disable the interpreter completely because it
can still be necessary to interpret if the target doesn't support JIT.
No obvious way to test this in LLVM, but this matches what
LLVMCreateExecutionEngineForModule() does and fixes the clang-interpreter
example in the clang source tree which uses the ExecutionEngine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212086 91177308-0d34-0410-b5e6-96231b3b80d8