We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148568 91177308-0d34-0410-b5e6-96231b3b80d8
Providing a template argment to a non-templatized class was crashing
tblgen. Add a diagnostic.
For example,
$ cat bug.td
class A;
def B : A<0> {
}
$ llvm-tblgen bug.td
bug.td:3:11: error: template argument provided to non-template class
def B : A<0> {
^
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148565 91177308-0d34-0410-b5e6-96231b3b80d8
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148556 91177308-0d34-0410-b5e6-96231b3b80d8
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
can't handle. Also don't produce non-zero results for things which won't be
transformed by SROA at all just because we saw the loads/stores before we saw
the use of the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148536 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
'insertvalue' instructions that recreate the structure returned by the
'landingpad' instruction. Because the 'insertvalue' instruction isn't supported
by FastISel, this can save a bit of time during -O0 compilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148520 91177308-0d34-0410-b5e6-96231b3b80d8
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148444 91177308-0d34-0410-b5e6-96231b3b80d8
It adds register mask operands to x86 call instructions. Once all the
backend passes support register mask operands, this will be permanently
enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148438 91177308-0d34-0410-b5e6-96231b3b80d8