The gold plugin never calls MaterializeModule, so any old debug info
was not deleted and could cause crashes.
Now that it is being "upgraded", the plugin also has to handle warnings
and create Modules with a nice id (it shows in the warning).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230655 91177308-0d34-0410-b5e6-96231b3b80d8
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230651 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is in response to r223147 where the avaiable features are
computed based on ".cpu" directive. This will work clean for the standard
variants like cortex-a9. For custom variants which rely on standard cpu names
for assembly, the additional features of a CPU should be propagated. This can be
done via ".arch_extension" as long as the assembler supports it. The
implementation for krait along with unit test will be submitted in next patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230650 91177308-0d34-0410-b5e6-96231b3b80d8
accesses are via different types
Noticed this while generalizing the code for loop distribution.
I confirmed with Arnold that this was indeed a bug and managed to create
a testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230647 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out that after the past MMX commits, we don't need to rely on this
flag to get better codegen for MMX. Also update the tests to become
triple neutral.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230637 91177308-0d34-0410-b5e6-96231b3b80d8
The latency for the WriteMULm class was set to 4, which is actually lower than the latency for WriteMULr (5).
A better estimate would be 4 added to WriteMULr, that is, 9.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230634 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine has logic to convert aligned Altivec load/store intrinsics into
regular loads and stores. Unfortunately, there seems to be no regression test
covering this behavior. Adding one...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230632 91177308-0d34-0410-b5e6-96231b3b80d8
formulaic into the top v8i16 lowering routine.
This makes the generalized lowering a completely general and single path
lowering which will allow generalizing it in turn for multiple 128-bit
lanes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230623 91177308-0d34-0410-b5e6-96231b3b80d8
IRCE can now split the iteration space for loops like:
for (i = n; i >= 0; i--)
a[i + k] = 42; // bounds check on access
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230618 91177308-0d34-0410-b5e6-96231b3b80d8
Add `CHECK-SAME`, which requires that the pattern matches on the *same*
line as the previous `CHECK`/`CHECK-NEXT` -- in other words, no newline
is allowed in the skipped region. This is similar to `CHECK-NEXT`,
which requires exactly 1 newline in the skipped region.
My motivation is to simplify checking the long lines of LLVM assembly
for the new debug info hierarchy. This allows CHECK sequences like the
following:
CHECK: ![[REF]] = !SomeMDNode(
CHECK-SAME: file: ![[FILE:[0-9]+]]
CHECK-SAME: otherField: 93{{[,)]}}
which is equivalent to:
CHECK: ![[REF]] = !SomeMDNode({{.*}}file: ![[FILE:[0-9]+]]{{.*}}otherField: 93{{[,)]}}
While this example just has two fields, many nodes in debug info have
more than that. `CHECK-SAME` will keep the logic easy to follow.
Morever, it enables interleaving `CHECK-NOT`s without allowing newlines.
Consider the following:
CHECK: ![[REF]] = !SomeMDNode(
CHECK-SAME: file: ![[FILE:[0-9]+]]
CHECK-NOT: unexpectedField:
CHECK-SAME: otherField: 93{{[,)]}}
CHECK-NOT: otherUnexpectedField:
CHECK-SAME: )
which doesn't seem to have an equivalent `CHECK` line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230612 91177308-0d34-0410-b5e6-96231b3b80d8
Also remove the somewhat misleading initializers from
VectorizationFactor and VectorizationInterleave. They will get
initialized with the default ctor since no cl::init is provided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230608 91177308-0d34-0410-b5e6-96231b3b80d8
When I originally committed the statepoint docs, I left placeholders for example IR fragments. I'm finally getting around to filling those in.
I also added IR fragments to illustrate the usage of the PlaceSafepoints pass while I was at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230601 91177308-0d34-0410-b5e6-96231b3b80d8
It still prints "Assembling path/to/X86CompilationCallback_Win64.asm",
but linking does the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230596 91177308-0d34-0410-b5e6-96231b3b80d8
Use the IRBuilder helpers for gc.statepoint and gc.result, instead of
coding the construction by hand. Note that the gc.statepoint IRBuilder
handles only CallInst, not InvokeInst; retain that part of hand-coding.
Differential Revision: http://reviews.llvm.org/D7518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230591 91177308-0d34-0410-b5e6-96231b3b80d8
Explanation: This function is in TargetLowering because it uses
RegClassForVT which would need to be moved to TargetRegisterInfo
and would necessitate moving isTypeLegal over as well - a massive
change that would just require TargetLowering having a TargetRegisterInfo
class member that it would use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230585 91177308-0d34-0410-b5e6-96231b3b80d8
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230583 91177308-0d34-0410-b5e6-96231b3b80d8
Add a brief section linking to the experimental statepoint intrinsics analogous to the one we have linking to patchpoint.
While I'm here, cleanup some wording about what the gc "name" attribute actually means. It's not the name of a *collector* it's the name of the *strategy* which may be compatible with multiple collectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230576 91177308-0d34-0410-b5e6-96231b3b80d8
This symbol exists only to pull in the required pieces of the runtime,
so nothing ever needs to refer to it. Making it hidden avoids the
potential for issues with duplicate symbols when linking profiled
libraries together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230566 91177308-0d34-0410-b5e6-96231b3b80d8
Remove a newline from `AssemblyWriter::printMDNodeBody()`, and add one
to `AssemblyWriter::writeMDNode()`. NFCI for assembly output.
However, this drops an inconsistent newline from `Metadata::print()`
when `this` is an `MDNode`. Now the newline added by `Metadata::dump()`
won't look so verbose.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230565 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-on to r227491 which tightens the check for propagating FP
values. If a non-constant value happens to be a zero, we would hit the same
bug as before.
Bug noted and patch suggested by Eli Friedman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230564 91177308-0d34-0410-b5e6-96231b3b80d8
the .h file. It's used in only one place (other than recursively)
and there's no need to include it everywhere.
Saves almost 900k from total llvm object file size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230561 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: SROA generates code that isn't quite as easy to optimize and contains unusual-sized shuffles, but that code is generally correct. As discussed in D7487 the right place to clean things up is InstCombine, which will pick up the type-punning pattern and transform it into a more obvious bitcast+extractelement, while leaving the other patterns SROA encounters as-is.
Test Plan: make check
Reviewers: jvoung, chandlerc
Subscribers: llvm-commits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230560 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out we have a macro to ensure that debuggers can access
`dump()` methods. Use it. Hopefully this will prevent me (and others)
from committing crimes like in r223802 (search for /10000/, or just see
the fix in r224407).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230555 91177308-0d34-0410-b5e6-96231b3b80d8
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
Move the FrameEntry::dumpInstructions down in the file at some
place where it can see the declarations of FDE and CIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230549 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a small series aiming at making
debug_frame dump more useful (right now it prints a list of
opeartions without their operands).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230547 91177308-0d34-0410-b5e6-96231b3b80d8