While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255422 91177308-0d34-0410-b5e6-96231b3b80d8
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255387 91177308-0d34-0410-b5e6-96231b3b80d8
computeRegisterLiveness() was broken in that it reported dead for a
register even if a subregister was alive. I assume this was because the
results of analayzePhysRegs() are hard to understand with respect to
subregisters.
This commit: Changes the results of analyzePhysRegs (=struct
PhysRegInfo) to be clearly understandable, also renames the fields to
avoid silent breakage of third-party code (and improve the grammar).
Fix all (two) users of computeRegisterLiveness() in llvm: By reenabling
it and removing workarounds for the bug.
This fixes http://llvm.org/PR24535 and http://llvm.org/PR25033
Differential Revision: http://reviews.llvm.org/D15320
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255362 91177308-0d34-0410-b5e6-96231b3b80d8
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given calling convention and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
rdar://problem/23557469
Differential Revision: http://reviews.llvm.org/D15340
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255353 91177308-0d34-0410-b5e6-96231b3b80d8
PR25763 demonstrated an issue with D14683 - vector comparison constant folding only works for i1 results, so we need to split off the sign-extension of the result to the required type. Luckily this can be done with the existing type legalization code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255289 91177308-0d34-0410-b5e6-96231b3b80d8
SystemZ needs to do its scheduling after branch relaxation, which can
only happen after block placement, and therefore the standard
PostRAScheduler point in the pass sequence is too early.
TargetMachine::targetSchedulesPostRAScheduling() is a new method that
signals on returning true that target will insert the final scheduling
pass on its own.
Reviewed by Hal Finkel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255234 91177308-0d34-0410-b5e6-96231b3b80d8
Detecting additional dead-defs without a dead flag that are only visible
through liveness information should be part of the register operand
collection not intertwined with the register pressure update logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255192 91177308-0d34-0410-b5e6-96231b3b80d8
Target-specific instructions may have uninteresting physreg clobbers,
for target-specific reasons. The peephole pass doesn't need to concern
itself with such defs, as long as they're implicit and marked as dead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255182 91177308-0d34-0410-b5e6-96231b3b80d8
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255114 91177308-0d34-0410-b5e6-96231b3b80d8
It's strange to duplicate the logic for emitting FP values into
emitGlobalConstantDataSequential, and it's even stranger that we end
up printing the verbose assembly comments differently between the two
paths. Just call into emitGlobalConstantFP rather than crudely
duplicating its logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254988 91177308-0d34-0410-b5e6-96231b3b80d8
Patterns were missing for KNL target for <8 x i32>, <8 x float> masked load/store.
This intrinsic comes with all legal types:
<8 x float> @llvm.masked.load.v8f32(<8 x float>* %addr, i32 align, <8 x i1> %mask, <8 x float> %passThru),
but still requires lowering, because VMASKMOVPS, VMASKMOVDQU32 work with 512-bit vectors only.
All data operands should be widened to 512-bit vector.
The mask operand should be widened to v16i1 with zeroes.
Differential Revision: http://reviews.llvm.org/D15265
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254909 91177308-0d34-0410-b5e6-96231b3b80d8
Now that ScheduleDAGInstrs doesn't need it anymore we can move the field
down the class hierarcy to ScheduleDAGMI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254759 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we remove the MMOs from Load/Store instructions,
they are treated as volatile. This makes other optimization passes unhappy.
eg. Load/Store Optimization
So, it looks better to merge, not remove.
Reviewers: gberry, mcrosier
Subscribers: gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D14797
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254694 91177308-0d34-0410-b5e6-96231b3b80d8
Re-comitting with a change that avoids undefined uses getting put into
the VRegUses list.
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254683 91177308-0d34-0410-b5e6-96231b3b80d8
CFI emits jump slots for indirect functions as a byte array
constant, and declares function-typed aliases to these constants.
This change fixes AsmPrinter to emit these aliases as function
symbols and not data symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254674 91177308-0d34-0410-b5e6-96231b3b80d8
Code generation often exposes redundant physical register copies through
virtual registers such as:
%vreg = COPY %PHYSREG
...
%PHYSREG = COPY %vreg
There are cases where no intervening clobber of %PHYSREG occurs, and the
later copy could therefore be removed. In some cases this further allows
us to remove the initial copy.
This patch contains a motivating example which comes from the x86 build
of Chrome, specifically cc::ResourceProvider::UnlockForRead uses
libstdc++'s implementation of hash_map. That example has two tests live
at the same time, and after machine sinking LLVM has confused itself
enough and things spilling EFLAGS is a great idea even though it's
never restored and the comparison results are both live.
Before this patch we have:
DEC32m %RIP, 1, %noreg, <ga:@L>, %noreg, %EFLAGS<imp-def>
%vreg1<def> = COPY %EFLAGS; GR64:%vreg1
%EFLAGS<def> = COPY %vreg1; GR64:%vreg1
JNE_1 <BB#1>, %EFLAGS<imp-use>
Both copies are useless. This patch tries to eliminate the later copy in
a generic manner.
dec is especially confusing to LLVM when compared with sub.
I wrote this patch to treat all physical registers generically, but only
remove redundant copies of non-allocatable physical registers because
the allocatable ones caused issues (e.g. when calling conventions weren't
properly modeled) and should be handled later by the register allocator
anyways.
The following tests used to failed when the patch also replaced allocatable
registers:
CodeGen/X86/StackColoring.ll
CodeGen/X86/avx512-calling-conv.ll
CodeGen/X86/copy-propagation.ll
CodeGen/X86/inline-asm-fpstack.ll
CodeGen/X86/musttail-varargs.ll
CodeGen/X86/pop-stack-cleanup.ll
CodeGen/X86/preserve_mostcc64.ll
CodeGen/X86/tailcallstack64.ll
CodeGen/X86/this-return-64.ll
This happens because COPY has other special meaning for e.g. dependency
breakage and x87 FP stack.
Note that all other backends' tests pass.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15157
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254665 91177308-0d34-0410-b5e6-96231b3b80d8
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254653 91177308-0d34-0410-b5e6-96231b3b80d8
This works mostly fine but breaks some stage 1 builders when compiling
compiler-rt on i386. Revert for further investigation as I can't see an
obvious cause/fix.
This reverts commit r254577.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254586 91177308-0d34-0410-b5e6-96231b3b80d8
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254577 91177308-0d34-0410-b5e6-96231b3b80d8
AggressiveAntiDepBreaker was renaming registers specified by the user
for inline assembly. While this will work for compiler-specified
registers, it won't work for user-specified registers, and at the time
this runs, I don't currently see a way to distinguish them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254532 91177308-0d34-0410-b5e6-96231b3b80d8
vector.resize() is significantly slower than memset in many STLs
and the cost of initializing these vectors is significant on targets
with many registers. Since we don't need the overhead of a vector,
use a simple unique_ptr instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254526 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254524 91177308-0d34-0410-b5e6-96231b3b80d8
The bug is introduced in r254377 which failed some tests on ARM, where a new
probability is assigned to a successor but the provided BB may not be a
successor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254463 91177308-0d34-0410-b5e6-96231b3b80d8