The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254404 91177308-0d34-0410-b5e6-96231b3b80d8
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254402 91177308-0d34-0410-b5e6-96231b3b80d8
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254377 91177308-0d34-0410-b5e6-96231b3b80d8
Nobody was checking the returnvalue of recede()/advance() so we can
simply replace this code with asserts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254371 91177308-0d34-0410-b5e6-96231b3b80d8
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254366 91177308-0d34-0410-b5e6-96231b3b80d8
The root cause is the rounding behavior in BranchProbability construction. We may consider to use truncation instead in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254356 91177308-0d34-0410-b5e6-96231b3b80d8
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254352 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254348 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254227 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254085 91177308-0d34-0410-b5e6-96231b3b80d8
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254061 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253965 91177308-0d34-0410-b5e6-96231b3b80d8
Duplicate a few common definitions between DFAPacketizer.cpp and
DFAPacketizerEmitter.cpp to avoid including files from CodeGen
in TableGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253820 91177308-0d34-0410-b5e6-96231b3b80d8
Extended DFA tablegen to:
- added "-debug-only dfa-emitter" support to llvm-tblgen
- defined CVI_PIPE* resources for the V60 vector coprocessor
- allow specification of multiple required resources
- supports ANDs of ORs
- e.g. [SLOT2, SLOT3], [CVI_MPY0, CVI_MPY1] means:
(SLOT2 OR SLOT3) AND (CVI_MPY0 OR CVI_MPY1)
- added support for combo resources
- allows specifying ORs of ANDs
- e.g. [CVI_XLSHF, CVI_MPY01] means:
(CVI_XLANE AND CVI_SHIFT) OR (CVI_MPY0 AND CVI_MPY1)
- increased DFA input size from 32-bit to 64-bit
- allows for a maximum of 4 AND'ed terms of 16 resources
- supported expressions now include:
expression => term [AND term] [AND term] [AND term]
term => resource [OR resource]*
resource => one_resource | combo_resource
combo_resource => (one_resource [AND one_resource]*)
Author: Dan Palermo <dpalermo@codeaurora.org>
kparzysz: Verified AMDGPU codegen to be unchanged on all llc
tests, except those dealing with instruction encodings.
Reapply the previous patch, this time without circular dependencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253793 91177308-0d34-0410-b5e6-96231b3b80d8
Extended DFA tablegen to:
- added "-debug-only dfa-emitter" support to llvm-tblgen
- defined CVI_PIPE* resources for the V60 vector coprocessor
- allow specification of multiple required resources
- supports ANDs of ORs
- e.g. [SLOT2, SLOT3], [CVI_MPY0, CVI_MPY1] means:
(SLOT2 OR SLOT3) AND (CVI_MPY0 OR CVI_MPY1)
- added support for combo resources
- allows specifying ORs of ANDs
- e.g. [CVI_XLSHF, CVI_MPY01] means:
(CVI_XLANE AND CVI_SHIFT) OR (CVI_MPY0 AND CVI_MPY1)
- increased DFA input size from 32-bit to 64-bit
- allows for a maximum of 4 AND'ed terms of 16 resources
- supported expressions now include:
expression => term [AND term] [AND term] [AND term]
term => resource [OR resource]*
resource => one_resource | combo_resource
combo_resource => (one_resource [AND one_resource]*)
Author: Dan Palermo <dpalermo@codeaurora.org>
kparzysz: Verified AMDGPU codegen to be unchanged on all llc
tests, except those dealing with instruction encodings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253790 91177308-0d34-0410-b5e6-96231b3b80d8
When MergeConsecutiveStores() combines two loads and two stores into
wider loads and stores, the chain users of both of the original loads
must be transfered to the new load, because it may be that a chain
user only depends on one of the loads.
New test case: test/CodeGen/SystemZ/dag-combine-01.ll
Reviewed by James Y Knight.
Bugzilla: https://llvm.org/bugs/show_bug.cgi?id=25310#c6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253779 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add and instructions immediately after loads that only have their low
bits used, assuming that the (and (load x) c) will be matched as a
extload and the ands/truncs fed by the extload will be removed by isel.
Reviewers: mcrosier, qcolombet, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253722 91177308-0d34-0410-b5e6-96231b3b80d8
The included test only checks for a compiler crash for now. Several people are
facing this issue, so we first resolve the crash, and will increase shrinkwrap's
coverage later in a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253718 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new API, LTOCodeGenerator::setFileType, to choose the output file
format for LTO CodeGen. A corresponding change to use this new API from
llvm-lto and a test case is coming in a separate commit.
Differential Revision: http://reviews.llvm.org/D14554
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253622 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the register allocator knows about the barriers on funclet
entry and exit, testing has shown that this is unnecessary.
We still demote PHIs on unsplittable blocks due to the differences
between the IR CFG and the Machine CFG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253619 91177308-0d34-0410-b5e6-96231b3b80d8
This is another step towards allowing SimplifyCFG to speculate harder, but then have
CGP clean things up if the target doesn't like it.
Previous patches in this series:
http://reviews.llvm.org/D12882http://reviews.llvm.org/D13297
D13297 should catch most expensive ops, but speculation of cttz/ctlz requires special
handling because of weirdness in the intrinsic definition for handling a zero input
(that definition can probably be blamed on x86).
For example, if we have the usual speculated-by-select expensive op pattern like this:
%tobool = icmp eq i64 %A, 0
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
%cond = select i1 %tobool, i64 64, i64 %0
ret i64 %cond
There's an instcombine that will turn it into:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 false) ; is_zero_undef == false
This CGP patch is looking for that case and despeculating it back into:
entry:
%tobool = icmp eq i64 %A, 0
br i1 %tobool, label %cond.end, label %cond.true
cond.true:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
br label %cond.end
cond.end:
%cond = phi i64 [ %0, %cond.true ], [ 64, %entry ]
ret i64 %cond
This unfortunately may lead to poorer codegen (see the changes in the existing x86 test),
but if we increase speculation in SimplifyCFG (the next step in this patch series), then
we should avoid those kinds of cases in the first place.
The need for this patch was originally mentioned here:
http://reviews.llvm.org/D7506
with follow-up here:
http://reviews.llvm.org/D7554
Differential Revision: http://reviews.llvm.org/D14630
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253573 91177308-0d34-0410-b5e6-96231b3b80d8
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253511 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for vector constant folding of integer/float comparisons.
This requires FoldConstantVectorArithmetic to support scalar constant operands (in this case ISD::CONDCASE). In future we should be able to support other scalar constant types as necessary (and possibly start calling FoldConstantVectorArithmetic for all node creations)
Differential Revision: http://reviews.llvm.org/D14683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253504 91177308-0d34-0410-b5e6-96231b3b80d8
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253484 91177308-0d34-0410-b5e6-96231b3b80d8
The virtual register containing the address for returned value on
stack should in the DAG be represented with a CopyFromReg node and not
a Register node. Otherwise, InstrEmitter will not make sure that it
ends up in the right register class for the target instruction.
SystemZ needs this, becuause the reg class for address registers is a
subset of the general 64 bit register class.
test/SystemZ/CodeGen/args-07.ll and args-04.ll updated to run with
-verify-machineinstrs.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253461 91177308-0d34-0410-b5e6-96231b3b80d8
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253436 91177308-0d34-0410-b5e6-96231b3b80d8
When looking for the best successor from the outer loop for a block
belonging to an inner loop, the edge probability computation can be
improved so that edges in the inner loop are ignored. For example,
suppose we are building chains for the non-loop part of the following
code, and looking for B1's best successor. Assume the true body is very
hot, then B3 should be the best candidate. However, because of the
existence of the back edge from B1 to B0, the probability from B1 to B3
can be very small, preventing B3 to be its successor. In this patch, when
computing the probability of the edge from B1 to B3, the weight on the
back edge B1->B0 is ignored, so that B1->B3 will have 100% probability.
if (...)
do {
B0;
... // some branches
B1;
} while(...);
else
B2;
B3;
Differential revision: http://reviews.llvm.org/D10825
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253414 91177308-0d34-0410-b5e6-96231b3b80d8
While still allowing CodeGen/AsmPrinter in llvm to own them using a bump
ptr allocator. (might be nice to replace the pointers there with
something that at least automatically calls their dtors, if that's
necessary/useful, rather than having it done explicitly (I think a typed
BumpPtrAllocator already does this, or maybe a unique_ptr with a custom
deleter, etc))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253409 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253378 91177308-0d34-0410-b5e6-96231b3b80d8
Statepoint lowering currently expects that the target method of a
statepoint only defines a single value. This precludes using
statepoints with ABIs that return values in multiple registers
(e.g. the SysV AMD64 ABI). This change adds support for lowering
statepoints with mutli-def targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253339 91177308-0d34-0410-b5e6-96231b3b80d8
Several places in AsmPrinter.cpp print comments describing MachineOperand
registers using MCRegisterInfo, which uses MCOperand-oriented names. This
doesn't work for targets that use virtual registers exclusively, as
WebAssembly does, since virtual registers are represented and printed
differently.
This patch preserves what seems to be the spirit of r229978, avoiding the
use of TM.getSubtargetImpl(), while still using MachineOperand-oriented
printing for MachineOperands.
Differential Revision: http://reviews.llvm.org/D14709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253338 91177308-0d34-0410-b5e6-96231b3b80d8
The way prelink used to work was
* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.
There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
implementation is pretty broken. It talks about relocations that are
"resolved by the static linker". If they are resolved, there are none
left for the prelinker. What one needs to track is if an expression
will require only dynamic relocations that point to the same DSO.
At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)
This patch removes support for it. That is, it stops printing the
".local" sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253280 91177308-0d34-0410-b5e6-96231b3b80d8
Allowing imprecise lane masks in case of more than 32 sub register lanes
lead to some tricky corner cases, and I need another bugfix for another
one. Instead I rather declare lane masks as precise and let tablegen
abort if we do not have enough bits.
This does not affect any in-tree target, even AMDGPU only needs 16 lanes
at the moment. If the 32 lanes turn out to be a problem in the future,
then we can easily change the LaneBitmask typedef to uint64_t.
Differential Revision: http://reviews.llvm.org/D14557
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253279 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Since we're passing references to dbg.value as pointers,
we need to have the frontend properly declare their sizes and
alignments (as it already does for regular pointers) in preparation
for my upcoming patch to have the verifer check that the sizes agree.
Also augment the backend logic that skips actually emitting this
information into DWARF such that it also handles reference types.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14275
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253186 91177308-0d34-0410-b5e6-96231b3b80d8
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253127 91177308-0d34-0410-b5e6-96231b3b80d8
attribute.
Even if the target supports shrink-wrapping, the prologue and epilogue
must not move because a crash can happen anywhere and sanitizers need
to be able to unwind from the PC of the crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253116 91177308-0d34-0410-b5e6-96231b3b80d8
When there is only 1 node left in the ready queue and it is picked call
the reason "ONLY1" instead of "NOCAND".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253096 91177308-0d34-0410-b5e6-96231b3b80d8
Richard Trieu noted that UBSan detected an overflowing shift, and the obvious fix caused a crash.
What was happening was that the shiftee (1U) was indeed too small for the possible range of shifts it had to handle, but also we were using "VT.getSizeInBits()" to get the maximum type bitwidth, but we wanted "VT.getScalarSizeInBits()" to get the vector lane size instead of the entire vector size.
Use an APInt for the shift and VT.getScalarSizeInBits().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253023 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r252565.
This also includes the revert of the commit mentioned below in order to
avoid breaking tests in AMDGPU:
Revert "AMDGPU: Set isAllocatable = 0 on VS_32/VS_64"
This reverts commit r252674.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252956 91177308-0d34-0410-b5e6-96231b3b80d8
ShrinkWrapping does not understand exception handling constraints for now, so
make sure we do not mess with them by aborting on functions that use EH
funclets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252917 91177308-0d34-0410-b5e6-96231b3b80d8
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252878 91177308-0d34-0410-b5e6-96231b3b80d8
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252839 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Don't fold
(zext (and (load x), cst)) -> (and (zextload x), (zext cst))
if
(and (load x) cst)
will match as a zextload already and has additional users.
For example, the following IR:
%load = load i32, i32* %ptr, align 8
%load16 = and i32 %load, 65535
%load64 = zext i32 %load16 to i64
store i32 %load16, i32* %dst1, align 4
store i64 %load64, i64* %dst2, align 8
used to produce the following aarch64 code:
ldr w8, [x0]
and w9, w8, #0xffff
and x8, x8, #0xffff
str w9, [x1]
str x8, [x2]
but with this change produces the following aarch64 code:
ldrh w8, [x0]
str w8, [x1]
str x8, [x2]
Reviewers: resistor, mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14340
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252789 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Inlined callsites need to be emitted in debug info so that sample profile can be annotated to the correct inlined instance.
Reviewers: dnovillo, dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14511
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252768 91177308-0d34-0410-b5e6-96231b3b80d8
This allows avoiding the default Expand behavior which
introduces stack usage. Bitcast the scalar and replace
the missing elements with undef.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252632 91177308-0d34-0410-b5e6-96231b3b80d8
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252631 91177308-0d34-0410-b5e6-96231b3b80d8
This is for AMDGPU to implement v2i64 extract as extract of
half of a v4i32.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252630 91177308-0d34-0410-b5e6-96231b3b80d8
This is one of the problems noted in PR25016:
https://llvm.org/bugs/show_bug.cgi?id=25016
and:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/090998.html
The spilling problem is independent and not addressed by this patch.
The MachineCombiner was doing reassociations that don't improve or even worsen the critical path.
This is caused by inclusion of the "slack" factor when calculating the critical path of the original
code sequence. If we don't add that, then we have a more conservative cost comparison of the old code
sequence vs. a new sequence. The more liberal calculation must be preserved, however, for the AArch64
MULADD patterns because benchmark regressions were observed without that.
The two failing test cases now have identical asm that does what we want:
a + b + c + d ---> (a + b) + (c + d)
Differential Revision: http://reviews.llvm.org/D13417
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252616 91177308-0d34-0410-b5e6-96231b3b80d8
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252578 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure what the point of this was. I'm not sure why
you would ever define an instruction that produces an unallocatable
register class. No tests fail with this removed, and it seems like
it should be a verifier error to define such an instruction.
This was problematic for AMDGPU because it would make bad decisions
by arbitrarily changing the register class when unsetting isAllocatable
for VS_32/VS_64, which is currently set as a workaround to this problem.
AMDGPU uses the VS_32/VS_64 register classes to represent operands which
can use either VGPRs or SGPRs. When isAllocatable is unset for these,
this would need to pick either the SGPR or VGPR class and insert either
a copy we don't want, or an illegal copy we would need to deal with
later. A semi-arbitrary register class ordering decision is made in tablegen,
which resulted in always picking a VGPR class because it happens to have
more registers than the SGPR register class. We really just want to
use whatever register class the original register had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252565 91177308-0d34-0410-b5e6-96231b3b80d8
Simply perform additional report_context() calls after a report()
instead of adding more and more overloaded variations of report(). Also
improve several instances where information was output in an ad-hoc way
probably because no matching report() overload was available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252552 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstr::print() with SkipOppers==true does not produce a
linebreak, so we have to do that in MachineVerifier::report().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252551 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252512 91177308-0d34-0410-b5e6-96231b3b80d8
We don't currently have any runtime library functions for operations on
f16 values (other than conversions to and from f32 and f64), so we
should always promote it to f32, even if that is not a legal type. In
that case, the f32 values would be softened to f32 library calls.
SoftenFloatRes_FP_EXTEND now needs to check the promoted operand's type,
as it may ne a no-op or require a different library call.
getCopyFromParts and getCopyToParts now need to cope with a
floating-point value stored in a larger integer part, as is the case for
any target that needs to store an f16 value in a 32-bit integer
register.
Differential Revision: http://reviews.llvm.org/D12856
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252459 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252383 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252318 91177308-0d34-0410-b5e6-96231b3b80d8
Windows EH funclets need to always return to a single parent funclet. However, it is possible for earlier optimizations to combine funclets (probably based on one funclet having an unreachable terminator) in such a way that this condition is violated.
These changes add code to the WinEHPrepare pass to detect situations where a funclet has multiple parents and clone such funclets, fixing up the unwind and catch return edges so that each copy of the funclet returns to the correct parent funclet.
Differential Revision: http://reviews.llvm.org/D13274?id=39098
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252249 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252219 91177308-0d34-0410-b5e6-96231b3b80d8