Replace all uses of AddDefaultPred with MachineInstrBuilder::add(predOps()).
This makes the code building MachineInstrs more readable, because it allows us
to write code like:
MIB.addSomeOperand(blah)
.add(predOps())
.addAnotherOperand(blahblah)
instead of
AddDefaultPred(MIB.addSomeOperand(blah))
.addAnotherOperand(blahblah)
This commit also adds the predOps helper in the ARM backend, as well as the add
method taking a variable number of operands to the MachineInstrBuilder.
The transformation has been done mostly automatically with a custom tool based
on Clang AST Matchers + RefactoringTool.
Differential Revision: https://reviews.llvm.org/D28555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291890 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281151 91177308-0d34-0410-b5e6-96231b3b80d8
In PIC mode we were previously computing global variable addresses (or GOT
entry addresses) by adding the PC, the PC-relative GOT displacement and
the GOT-relative symbol/GOT entry displacement. Because the latter two
displacements are fixed, we ended up performing one more addition than
necessary.
This change causes us to compute addresses using a single PC-relative
displacement, resulting in a shorter code sequence. This reduces code size
by about 4% in a recent build of Chromium for Android.
As a result of this change we no longer need to compute the GOT base address
in the ARM backend, which allows us to remove the Global Base Reg pass and
SDAG lowering for the GOT.
We also now no longer use the GOT when addressing a symbol which is known
to be defined in the same linkage unit. Specifically, the symbol must have
either hidden visibility or a strong definition in the current module in
order to not use the the GOT.
This is a change from the previous behaviour where we would use the GOT to
address externally visible symbols defined in the same module. I think the
only cases where this could matter are cases involving symbol interposition,
but we don't really support that well anyway.
Differential Revision: http://reviews.llvm.org/D13650
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251322 91177308-0d34-0410-b5e6-96231b3b80d8
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244693 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242386 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
classes. Replace the frame pointer initialization with a static function
that'll look it up via the subtarget on the MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232010 91177308-0d34-0410-b5e6-96231b3b80d8
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227113 91177308-0d34-0410-b5e6-96231b3b80d8
instruction from ARMInstrInfo to ARMBaseInstrInfo.
That way, thumb mode can also benefit from the advanced copy optimization.
<rdar://problem/12702965>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216274 91177308-0d34-0410-b5e6-96231b3b80d8
target hook.
This patch teaches the compiler that:
rX, rY = VMOVRRD dZ
is the same as:
rX = EXTRACT_SUBREG dZ, ssub_0
rY = EXTRACT_SUBREG dZ, ssub_1
<rdar://problem/12702965>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216132 91177308-0d34-0410-b5e6-96231b3b80d8
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214614 91177308-0d34-0410-b5e6-96231b3b80d8
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213967 91177308-0d34-0410-b5e6-96231b3b80d8
We were figuring out whether to use tPICADD or PICADD, then just using
tPICADD unconditionally anyway. Oops.
A testcase from someone familiar enough with ELF to produce one would
be appreciated. The existing PIC testcase correctly verifies the .s
generated, but that doesn't catch this bug, which only showed up in
direct-to-object mode.
http://llvm.org/bugs/show_bug.cgi?id=17180
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190417 91177308-0d34-0410-b5e6-96231b3b80d8
The create machine code wasn't properly in SSA, which the machine verifier
properly complains about. Now that fast-isel is closer to verifier clean,
errors like this show up more clearly.
Additionally, the Thumb pseudo tPICADD was used for both ARM and Thumb
mode functions, which is obviously wrong. Fix that along the way.
Test case is part of the following commit which will finish making an
additional fast-isel test verifier clean an enable it for the
regression test suite. This commit is separate since its not just
a verifier cleanup, but an actual correctness issue.
rdar://12594152 (for the fast-isel verifier aspects)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189269 91177308-0d34-0410-b5e6-96231b3b80d8
This unbreaks PIC with fast isel on ELF targets (PR16717). The output matches
what GCC and SDag do for PIC but may not cover all of the many flavors of PIC
that exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188551 91177308-0d34-0410-b5e6-96231b3b80d8
do in the SDag when lowering references to the GOT: use
ARMConstantPoolSymbol rather than creating a dummy global variable. The
computation of the alignment still feels weird (it uses IR types and
datalayout) but it preserves the exact previous behavior. This change
fixes the memory leak of the global variable detected on the valgrind
leak checking bot.
Thanks to Benjamin Kramer for pointing me at ARMConstantPoolSymbol to
handle this use case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187303 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step towards ELF support; currently ARMFastISel hasn't
been used for ELF object files yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164759 91177308-0d34-0410-b5e6-96231b3b80d8
The NOP, WFE, WFI, SEV and YIELD instructions are all hints w/
a different immediate value in bits [7,0]. Define a generic HINT
instruction and refactor NOP, WFI, WFI, SEV and YIELD to be
assembly aliases of that.
rdar://11600518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158674 91177308-0d34-0410-b5e6-96231b3b80d8
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151673 91177308-0d34-0410-b5e6-96231b3b80d8
the LDR instructions have. This makes the literal/register forms of the
instructions explicit and allows us to assign scheduling itineraries
appropriately. rdar://8477752
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117505 91177308-0d34-0410-b5e6-96231b3b80d8
explicit about the operands. Split out the different variants into separate
instructions. This gives us the ability to, among other things, assign
different scheduling itineraries to the variants. rdar://8477752.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117409 91177308-0d34-0410-b5e6-96231b3b80d8
instruction defines subregisters.
Any existing subreg indices on the original instruction are preserved or
composed with the new subreg index.
Also substitute multiple operands mentioning the original register by using the
new MachineInstr::substituteRegister() function. This is necessary because there
will soon be <imp-def> operands added to non read-modify-write partial
definitions. This instruction:
%reg1234:foo = FLAP %reg1234<imp-def>
will reMaterialize(%reg3333, bar) like this:
%reg3333:bar-foo = FLAP %reg333:bar<imp-def>
Finally, replace the TargetRegisterInfo pointer argument with a reference to
indicate that it cannot be NULL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105358 91177308-0d34-0410-b5e6-96231b3b80d8
- If destination is a physical register and it has a subreg index, use the
sub-register instead.
This fixes PR5423.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88745 91177308-0d34-0410-b5e6-96231b3b80d8