210 Commits

Author SHA1 Message Date
Florian Hahn
b2621b34b7 Use SmallPtrSet explicitly for SmallSets with pointer types (NFC).
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h

Reviewers: dblaikie, craig.topper

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D47836


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334492 91177308-0d34-0410-b5e6-96231b3b80d8
2018-06-12 11:16:56 +00:00
Nicola Zaghen
0818e789cb Rename DEBUG macro to LLVM_DEBUG.
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.

In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.

Differential Revision: https://reviews.llvm.org/D43624



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332240 91177308-0d34-0410-b5e6-96231b3b80d8
2018-05-14 12:53:11 +00:00
Fedor Sergeev
ae29a3a804 [PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass
Summary:
This was motivated by absence of PrunEH functionality in new PM.
It was decided that a proper way to do PruneEH is to add NoUnwind inference
into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top.

This change generalizes attribute handling implemented for (a removal of)
Convergent attribute, by introducing a generic builder-like class
   AttributeInferer

It registers all the attribute inference requests, storing per-attribute
predicates into a vector, and then goes through an SCC Node, scanning all
the instructions for not breaking attribute assumptions.

The main idea is that as soon all the instructions from all the functions
of SCC Node conform to attribute assumptions then we are free to infer
the attribute as set for all the functions of SCC Node.

It handles two distinct cases of attributes:
   - those that might break due to derefinement of the function code

     for these attributes we are allowed to apply inference only if all the
     functions are "exact definitions". Example - NoUnwind.

   - those that do not care about derefinement

     for these attributes we are allowed to apply inference as soon as we see
     any function definition. Example - removal of Convergent attribute.

Also in this commit:
* Converted all the FunctionAttrs tests to use FileCheck and added new-PM
  invocations to them

* FunctionAttrs/convergent.ll test demonstrates a difference in behavior between
   new and old PM implementations. Marked with FIXME.

* PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg
  combo as intended

* some of "other" tests were updated since function-attrs now infers 'nounwind'
  even for old PM pipeline

* -disable-nounwind-inference hidden option added as a possible workaround for a supposedly
  rare case when nounwind being inferred by default presents a problem

Reviewers: chandlerc, jlebar

Reviewed By: jlebar

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D44415

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328377 91177308-0d34-0410-b5e6-96231b3b80d8
2018-03-23 21:46:16 +00:00
Luke Cheeseman
037e821391 [FunctionAttrs][ArgumentPromotion][GlobalOpt] Disable some optimisations passes for naked functions
- Fix for bug 36078.
- Prevent the functionattrs, function-attrs, globalopt and argpromotion passes
  from changing naked functions.
- These passes can perform some alterations to the functions that should not be
  applied. An example is removing parameters that are seemingly not used because
  they are only referenced in the inline assembly. Another example is marking
  the function as fastcc.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325788 91177308-0d34-0410-b5e6-96231b3b80d8
2018-02-22 14:42:08 +00:00
Alina Sbirlea
a2d30e9740 Modify ModRefInfo values using static inline method abstractions [NFC].
Summary:
The aim is to make ModRefInfo checks and changes more intuitive
and less error prone using inline methods that abstract the bit operations.

Ideally ModRefInfo would become an enum class, but that change will require
a wider set of changes into FunctionModRefBehavior.

Reviewers: sanjoy, george.burgess.iv, dberlin, hfinkel

Subscribers: nlopes, llvm-commits

Differential Revision: https://reviews.llvm.org/D40749

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319821 91177308-0d34-0410-b5e6-96231b3b80d8
2017-12-05 20:12:23 +00:00
Eugene Zelenko
ab16d0abcd [Transforms] Fix some Clang-tidy modernize and Include What You Use warnings; other minor fixes (NFC).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316187 91177308-0d34-0410-b5e6-96231b3b80d8
2017-10-19 21:21:30 +00:00
Nuno Lopes
fe353a0cbf Merge isKnownNonNull into isKnownNonZero
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null

Differential Revision: https://reviews.llvm.org/D37628

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312869 91177308-0d34-0410-b5e6-96231b3b80d8
2017-09-09 18:23:11 +00:00
Chandler Carruth
e3e43d9d57 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-06 11:49:48 +00:00
David Blaikie
ffc893deb7 FunctionAttrs: Skip it if the effective SCC (ignoring optnone functions) is empty
Minor optimization but mostly simplifies my debugging so I'm not dealing
with empty SCCNodeSets while investigating issues in this optimization.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304597 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-02 21:24:17 +00:00
Reid Kleckner
a82b376f69 [IR] Abstract away ArgNo+1 attribute indexing as much as possible
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
  to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
  sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
  take attribute list indices.  Most of these were only used from
  BuildLibCalls, and doesNotAlias was only used to test or set if the
  return value is malloc-like.

I'm happy to split the patch, but I think they are probably easier to
review when taken together.

This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
  0: func attrs
  1: retattrs
  2...: arg attrs

Reviewers: chandlerc, pete, javed.absar

Subscribers: david2050, llvm-commits

Differential Revision: https://reviews.llvm.org/D32811

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302060 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-03 18:17:31 +00:00
Reid Kleckner
331b9af31d Use Argument::hasAttribute and AttributeList::ReturnIndex more
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.

NFC

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301666 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-28 18:37:16 +00:00
Reid Kleckner
d6b4b10a39 Prefer addAttr(Attribute::AttrKind) over the AttributeList overload
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300718 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-19 17:28:52 +00:00
Reid Kleckner
1f8f049069 [IR] Make paramHasAttr to use arg indices instead of attr indices
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.

Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300367 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-14 20:19:02 +00:00
Reid Kleckner
6707770d48 Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.

Rename AttributeSetImpl to AttributeListImpl to follow suit.

It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.

Reviewers: sanjoy, javed.absar, chandlerc, pete

Reviewed By: pete

Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits

Differential Revision: https://reviews.llvm.org/D31102

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298393 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-21 16:57:19 +00:00
Peter Collingbourne
8e38d8daaf FunctionAttrs: Factor out a function for querying memory access of a specific copy of a function. NFC.
This will later be used by ThinLTOBitcodeWriter to add copies of readnone
functions to the regular LTO module.

Differential Revision: https://reviews.llvm.org/D29695

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295008 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-14 00:28:13 +00:00
Sanjay Patel
a771f08794 [FunctionAttrs] try to extend nonnull-ness of arguments from a callsite back to its parent function
As discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-December/108182.html
...we should be able to propagate 'nonnull' info from a callsite back to its parent.

The original motivation for this patch is our botched optimization of "dyn_cast" (PR28430),
but this won't solve that problem.

The transform is currently disabled by default while we wait for clang to work-around
potential security problems:
http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html

Differential Revision: https://reviews.llvm.org/D27855


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294998 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-13 23:10:51 +00:00
Peter Collingbourne
54ad54e5f8 De-duplicate some code for creating an AARGetter suitable for the legacy PM.
I'm about to use this in a couple more places.

Differential Revision: https://reviews.llvm.org/D29793

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294648 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-09 23:11:52 +00:00
Chandler Carruth
5585626232 [PH] Replace uses of AssertingVH from members of analysis results with
a lazy-asserting PoisoningVH.

AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.

This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.

The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.

The rest is straight cleanup.

I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.

Differential Revision: https://reviews.llvm.org/D29006

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292928 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-24 12:55:57 +00:00
Daniel Jasper
8de3a54f07 Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290086 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-19 08:22:17 +00:00
Hal Finkel
bffeba468d Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289756 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-15 03:02:15 +00:00
Chad Rosier
e670c88387 Fix 80-column violations. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286117 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-07 16:28:04 +00:00
David Majnemer
5db0b906e8 [FunctionAttrs] Don't try to infer returned if it is already on an argument
Trying to infer the 'returned' attribute if an argument is already
'returned' can lead to verification failure: inference might determine
that a different argument is passed through which would result in two
different arguments marked as 'returned'.

This fixes PR30350.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281221 91177308-0d34-0410-b5e6-96231b3b80d8
2016-09-12 16:04:59 +00:00
Tim Shen
b62ba77b89 s/static inline/static/ for headers I have changed in r279475. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280257 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-31 16:48:13 +00:00
Chandler Carruth
377af8df2b [PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.

There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
   CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
   the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.

I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.

The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.

I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.

The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:

- We operate at three levels within the infrastructure: RefSCC, SCC, and
  Node. In each case, we are working bottom up and so we want to
  continue to iterate on the "lowest" node as the graph changes. Look at
  how we iterate over nodes in an SCC running function passes as those
  function passes mutate the CG. We continue to iterate on the "lowest"
  SCC, which is the one that continues to contain the function just
  processed.

- The call graph structure re-uses SCCs (and RefSCCs) during mutation
  events for the *highest* entry in the resulting new subgraph, not the
  lowest. This means that it is necessary to continually update the
  current SCC or RefSCC as it shifts. This is really surprising and
  subtle, and took a long time for me to work out. I actually tried
  changing the call graph to provide the opposite behavior, and it
  breaks *EVERYTHING*. The graph update algorithms are really deeply
  tied to this particualr pattern.

- When SCCs or RefSCCs are split apart and refined and we continually
  re-pin our processing to the bottom one in the subgraph, we need to
  enqueue the newly formed SCCs and RefSCCs for subsequent processing.
  Queuing them presents a few challenges:
  1) SCCs and RefSCCs use wildly different iteration strategies at
     a high level. We end up needing to converge them on worklist
     approaches that can be extended in order to be able to handle the
     mutations.
  2) The order of the enqueuing need to remain bottom-up post-order so
     that we don't get surprising order of visitation for things like
     the inliner.
  3) We need the worklists to have set semantics so we don't duplicate
     things endlessly. We don't need a *persistent* set though because
     we always keep processing the bottom node!!!! This is super, super
     surprising to me and took a long time to convince myself this is
     correct, but I'm pretty sure it is... Once we sink down to the
     bottom node, we can't re-split out the same node in any way, and
     the postorder of the current queue is fixed and unchanging.
  4) We need to make sure that the "current" SCC or RefSCC actually gets
     enqueued here such that we re-visit it because we continue
     processing a *new*, *bottom* SCC/RefSCC.

- We also need the ability to *skip* SCCs and RefSCCs that get merged
  into a larger component. We even need the ability to skip *nodes* from
  an SCC that are no longer part of that SCC.

This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.

We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.

Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:

- It is really nice to do this a function at a time because that
  function is likely hot in the cache. This means we want even the
  function pass adaptor to support online updates to the call graph!

- To update the call graph after arbitrary function pass mutations is
  quite hard. We have to build a fairly comprehensive set of
  data structures and then process them. Fortunately, some of this code
  is related to the code for building the cal graph in the first place.
  Unfortunately, very little of it makes any sense to share because the
  nature of what we're doing is so very different. I've factored out the
  one part that made sense at least.

- We need to transfer these updates into the various structures for the
  CGSCC pass manager. Once those were more sanely worked out, this
  became relatively easier. But some of those needs necessitated changes
  to the LazyCallGraph interface to make it significantly easier to
  extract the changed SCCs from an update operation.

- We also need to update the CGSCC analysis manager as the shape of the
  graph changes. When an SCC is merged away we need to clear analyses
  associated with it from the analysis manager which we didn't have
  support for in the analysis manager infrsatructure. New SCCs are easy!
  But then we have the case that the original SCC has its shape changed
  but remains in the call graph. There we need to *invalidate* the
  analyses associated with it.

- We also need to invalidate analyses after we *finish* processing an
  SCC. But the analyses we need to invalidate here are *only those for
  the newly updated SCC*!!! Because we only continue processing the
  bottom SCC, if we split SCCs apart the original one gets invalidated
  once when its shape changes and is not processed farther so its
  analyses will be correct. It is the bottom SCC which continues being
  processed and needs to have the "normal" invalidation done based on
  the preserved analyses set.

All of this is mostly background and context for the changes here.

Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.

Differential Revision: http://reviews.llvm.org/D21464

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279618 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-24 09:37:14 +00:00
Tim Shen
22fca38c9c [GraphTraits] Replace all NodeType usage with NodeRef
This should finish the GraphTraits migration.

Differential Revision: http://reviews.llvm.org/D23730


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279475 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-22 21:09:30 +00:00
Justin Bogner
7d7a23e700 Replace a few more "fall through" comments with LLVM_FALLTHROUGH
Follow up to r278902. I had missed "fall through", with a space.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278970 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-17 20:30:52 +00:00
Duncan P. N. Exon Smith
370879ff09 IPO: Swap || operands to avoid dereferencing end()
IsOperandBundleUse conveniently indicates  whether
std::next(F->arg_begin(),UseIndex) will get to (or past) end().  Check
it first to avoid dereferencing end().

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278884 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-17 01:23:58 +00:00
Sean Silva
2fb9a98752 Consistently use ModuleAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278078 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-09 00:28:38 +00:00
Sean Silva
6d4afae8c0 Add some comments linking back to PR28400.
Thanks to Mehdi for the suggestion!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277984 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-08 07:03:49 +00:00
Sean Silva
d4b4a02255 [PM] Invalidate CallGraphAnalysis because it holds AssertingVH
This is essentially PR28400. The fix here is similar to that implemented
in r274656.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277980 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-08 05:38:01 +00:00
Tim Shen
a9ed4cc01c [ADT] NFC: Generalize GraphTraits requirement of "NodeType *" in interfaces to "NodeRef", and migrate SCCIterator.h to use NodeRef
Summary: By generalize the interface, users are able to inject more flexible Node token into the algorithm, for example, a pair of vector<Node>* and index integer. Currently I only migrated SCCIterator to use NodeRef, but more is coming. It's a NFC.

Reviewers: dblaikie, chandlerc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D22937

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277399 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-01 22:32:20 +00:00
David Majnemer
baf88b3b1a [FunctionAttrs] Correct the safety analysis for inference of 'returned'
We skipped over ReturnInsts which didn't return an argument which would
lead us to incorrectly conclude that an argument returned by another
ReturnInst was 'returned'.

This reverts commit r275756.

This fixes PR28610.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276008 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-19 18:50:26 +00:00
NAKAMURA Takumi
73585958d4 Revert r275678, "Revert "Revert r275027 - Let FuncAttrs infer the 'returned' argument attribute""
This reverts also r275029, "Update Clang tests after adding inference for the returned argument attribute"

It broke LTO build. Seems miscompilation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275756 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-18 03:23:25 +00:00
Hal Finkel
4fe9cc7cb0 Revert "Revert r275027 - Let FuncAttrs infer the 'returned' argument attribute"
This reverts commit r275042; the initial commit triggered self-hosting failures
on ARM/AArch64. James Molloy identified the problematic backend code, which has
been disabled in r275677. Trying again...

Original commit message:

Let FuncAttrs infer the 'returned' argument attribute

A function can have one argument with the 'returned' attribute, indicating that
the associated argument is always the return value of the function. Add
FuncAttrs inference logic.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275678 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-16 07:21:28 +00:00
Hal Finkel
7f9e1e0b77 Revert r275027 - Let FuncAttrs infer the 'returned' argument attribute
Reverting r275027 and r275033. These seem to cause miscompiles on the AArch64 buildbot.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275042 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-11 04:51:23 +00:00
Hal Finkel
8b01a2f64c Don't use a SmallSet for returned attribute inference
Suggested post-commit by David Majnemer on IRC (following-up on a pre-commit
review comment).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275033 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-11 01:14:21 +00:00
Hal Finkel
772d8502ad Let FuncAttrs infer the 'returned' argument attribute
A function can have one argument with the 'returned' attribute, indicating that
the associated argument is always the return value of the function. Add
FuncAttrs inference logic.

Differential Revision: http://reviews.llvm.org/D22202

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275027 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-10 22:02:55 +00:00
Sean Silva
ad5ea26278 [PM] Some preparatory refactoring to minimize the diff of D21921
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274456 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-03 03:35:03 +00:00
Sean Silva
e82e4ddb87 Remove dead TLI arg of isKnownNonNull and propagate deadness. NFC.
This actually uncovered a surprisingly large chain of ultimately unused
TLI args.
From what I can gather, this argument is a remnant of when
isKnownNonNull would look at the TLI directly.
The current approach seems to be that InferFunctionAttrs runs early in
the pipeline and uses TLI to annotate the TLI-dependent non-null
information as return attributes.

This also removes the dependence of functionattrs on TLI altogether.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274455 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-02 23:47:27 +00:00
Benjamin Kramer
5288df58b7 Apply clang-tidy's modernize-loop-convert to most of lib/Transforms.
Only minor manual fixes. No functionality change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273808 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-26 12:28:59 +00:00
Sean Silva
cc691dd8da [PM] Port ReversePostOrderFunctionAttrs to the new PM
Below are my super rough notes when porting. They can probably serve as
a basic guide for porting other passes to the new PM. As I port more
passes I'll expand and generalize this and make a proper
docs/HowToPortToNewPassManager.rst document. There is also missing
documentation for general concepts and API's in the new PM which will
require some documentation.
Once there is proper documentation in place we can put up a list of
passes that have to be ported and game-ify/crowdsource the rest of the
porting (at least of the middle end; the backend is still unclear).

I will however be taking personal responsibility for ensuring that the
LLD/ELF LTO pipeline is ported in a timely fashion. The remaining passes
to be ported are (do something like
`git grep "<the string in the bullet point below>"` to find the pass):

General Scalar:
[ ] Simplify the CFG
[ ] Jump Threading
[ ] MemCpy Optimization
[ ] Promote Memory to Register
[ ] MergedLoadStoreMotion
[ ] Lazy Value Information Analysis

General IPO:
[ ] Dead Argument Elimination
[ ] Deduce function attributes in RPO

Loop stuff / vectorization stuff:
[ ] Alignment from assumptions
[ ] Canonicalize natural loops
[ ] Delete dead loops
[ ] Loop Access Analysis
[ ] Loop Invariant Code Motion
[ ] Loop Vectorization
[ ] SLP Vectorizer
[ ] Unroll loops

Devirtualization / CFI:
[ ] Cross-DSO CFI
[ ] Whole program devirtualization
[ ] Lower bitset metadata

CGSCC passes:
[ ] Function Integration/Inlining
[ ] Remove unused exception handling info
[ ] Promote 'by reference' arguments to scalars

Please let me know if you are interested in working on any of the passes
in the above list (e.g. reply to the post-commit thread for this patch).
I'll probably be tackling "General Scalar" and "General IPO" first FWIW.

Steps as I port "Deduce function attributes in RPO"
---------------------------------------------------

(note: if you are doing any work based on these notes, please leave a
note in the post-commit review thread for this commit with any
improvements / suggestions / incompleteness you ran into!)

Note: "Deduce function attributes in RPO" is a module pass.

1. Do preparatory refactoring.

Do preparatory factoring. In this case all I had to do was to pull out a static helper (r272503).
(TODO: give more advice here e.g. if pass holds state or something)

2. Rename the old pass class.

llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename class ReversePostOrderFunctionAttrs -> ReversePostOrderFunctionAttrsLegacyPass
in preparation for adding a class ReversePostOrderFunctionAttrs as the pass in the new PM.
(edit: actually wait what? The new class name will be
ReversePostOrderFunctionAttrsPass, so it doesn't conflict. So this step is
sort of useless churn).

llvm/include/llvm/InitializePasses.h
llvm/lib/LTO/LTOCodeGenerator.cpp
llvm/lib/Transforms/IPO/IPO.cpp
llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename initializeReversePostOrderFunctionAttrsPass -> initializeReversePostOrderFunctionAttrsLegacyPassPass
(note that the "PassPass" thing falls out of `s/ReversePostOrderFunctionAttrs/ReversePostOrderFunctionAttrsLegacyPass/`)
Note that the INITIALIZE_PASS macro is what creates this identifier name, so renaming the class requires this renaming too.

Note that createReversePostOrderFunctionAttrsPass does not need to be
renamed since its name is not generated from the class name.

3. Add the new PM pass class.

In the new PM all passes need to have their
declaration in a header somewhere, so you will often need to add a header.
In this case
llvm/include/llvm/Transforms/IPO/FunctionAttrs.h is already there because
PostOrderFunctionAttrsPass was already ported.
The file-level comment from the .cpp file can be used as the file-level
comment for the new header. You may want to tweak the wording slightly
from "this file implements" to "this file provides" or similar.

Add declaration for the new PM pass in this header:

    class ReversePostOrderFunctionAttrsPass
        : public PassInfoMixin<ReversePostOrderFunctionAttrsPass> {
    public:
      PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
    };

Its name should end with `Pass` for consistency (note that this doesn't
collide with the names of most old PM passes). E.g. call it
`<name of the old PM pass>Pass`.

Also, move the doxygen comment from the old PM pass to the declaration of
this class in the header.
Also, include the declaration for the new PM class
`llvm/Transforms/IPO/FunctionAttrs.h` at the top of the file (in this case,
it was already done when the other pass in this file was ported).

Now define the `run` method for the new class.
The main things here are:
a) Use AM.getResult<...>(M) to get results instead of `getAnalysis<...>()`

b) If the old PM pass would have returned "false" (i.e. `Changed ==
false`), then you should return PreservedAnalyses::all();

c) In the old PM getAnalysisUsage method, observe the calls
   `AU.addPreserved<...>();`.

   In the case `Changed == true`, for each preserved analysis you should do
   call `PA.preserve<...>()` on a PreservedAnalyses object and return it.
   E.g.:

       PreservedAnalyses PA;
       PA.preserve<CallGraphAnalysis>();
       return PA;

Note that calls to skipModule/skipFunction are not supported in the new PM
currently, so optnone and optimization bisect support do not work. You can
just drop those calls for now.

4. Add the pass to the new PM pass registry to make it available in opt.

In llvm/lib/Passes/PassBuilder.cpp add a #include for your header.
`#include "llvm/Transforms/IPO/FunctionAttrs.h"`
In this case there is already an include (from when
PostOrderFunctionAttrsPass was ported).

Add your pass to llvm/lib/Passes/PassRegistry.def
In this case, I added
`MODULE_PASS("rpo-functionattrs", ReversePostOrderFunctionAttrsPass())`
The string is from the `INITIALIZE_PASS*` macros used in the old pass
manager.

Then choose a test that uses the pass and use the new PM `-passes=...` to
run it.
E.g. in this case there is a test that does:
; RUN: opt < %s -basicaa -functionattrs -rpo-functionattrs -S | FileCheck %s
I have added the line:
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<targetlibinfo>,cgscc(function-attrs),rpo-functionattrs' -S | FileCheck %s
The `-aa-pipeline=basic-aa` and
`require<targetlibinfo>,cgscc(function-attrs)` are what is needed to run
functionattrs in the new PM (note that in the new PM "functionattrs"
becomes "function-attrs" for some reason). This is just pulled from
`readattrs.ll` which contains the change from when functionattrs was ported
to the new PM.
Adding rpo-functionattrs causes the pass that was just ported to run.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272505 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-12 07:48:51 +00:00
Sean Silva
5f6317b293 Factor out a helper. NFC
Prep for porting to new PM.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272503 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-12 05:44:51 +00:00
David Majnemer
1f13752cbe [FunctionAttrs] Volatile loads should disable readonly
A volatile load has side effects beyond what callers expect readonly to
signify.  For example, it is not safe to reorder two function calls
which each perform a volatile load to the same memory location.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270671 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-25 05:53:04 +00:00
Mehdi Amini
a4a5ff8bb3 ReversePostOrderFunctionAttrs is not modifying the call graph, let's preserve it.
When running cc1 with -flto=thin, it is followed by GlobalOpt, which
requires the callgraph. This saves rebuilding one.

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268266 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-02 18:03:33 +00:00
Andrew Kaylor
1e455c5cfb Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267231 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-22 22:06:11 +00:00
Vedant Kumar
8866d94a61 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267115 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-22 06:51:37 +00:00
Andrew Kaylor
c852398cbc Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267022 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-21 17:58:54 +00:00
Sanjoy Das
c9e3e3cbfd Don't IPO over functions that can be de-refined
Summary:
Fixes PR26774.

If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".

Motivation:

I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard.  So transforming:

```
void f(unsigned x) {
  unsigned t = 5 / x;
  (void)t;
}
```

to

```
void f(unsigned x) { }
```

is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).

Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM.  For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).

Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have.  This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.

For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store.  As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal.  The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal.  Such a
refined variant will look like it is `readonly`.  However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.

Note: this is not just a problem with atomics or with linking
differently optimized object files.  See PR26774 for more realistic
examples that involved neither.

This patch:

This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time.  It then changes a set of IPO passes to bail out if they see
such a function.

Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D18634

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265762 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-08 00:48:30 +00:00
Justin Lebar
dd68c9c6c5 [attrs] Handle convergent CallSites.
Summary:
Previously we had a notion of convergent functions but not of convergent
calls.  This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.

Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent.  As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.

Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage.  Re-landed here with no changes.

Reviewers: chandlerc, jingyue

Subscribers: llvm-commits, tra, jhen, hfinkel

Differential Revision: http://reviews.llvm.org/D17739

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263481 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-14 20:18:54 +00:00
Chandler Carruth
8e27cb2f34 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263219 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-11 11:05:24 +00:00