This prevents Constant Hoisting from pulling the constant out of the block,
allowing us to still produce LDRH/UXTH nodes. LDRB/UXTB (255) is already cheap
by the default getIntImmCost, but I've added it for clarity.
Differential Revision: https://reviews.llvm.org/D57671
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353040 91177308-0d34-0410-b5e6-96231b3b80d8
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@345705 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed while fixing PR39368 that we don't have generic shuffle costs for broadcast style shuffles.
This patch adds SK_BROADCAST handling, but exposes ARM/AARCH64 lack of handling of this type, which I've added a fix for at the same time.
Differential Revision: https://reviews.llvm.org/D53570
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@345253 91177308-0d34-0410-b5e6-96231b3b80d8
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@344472 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder Loop
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336062 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on PR33744, this patch relaxes ShuffleKind::SK_Alternate which requires shuffle masks to only match an alternating pattern from its 2 sources:
e.g. v4f32: <0,5,2,7> or <4,1,6,3>
This seems far too restrictive as most SIMD hardware which will implement it using a general blend/bit-select instruction, so replaces it with SK_Select, permitting elements from either source as long as they are inline:
e.g. v4f32: <0,5,2,7>, <4,1,6,3>, <0,1,6,7>, <4,1,2,3> etc.
This initial patch just updates the name and cost model shuffle mask analysis, later patch reviews will update SLP to better utilise this - it still limits itself to SK_Alternate style patterns.
Differential Revision: https://reviews.llvm.org/D47985
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334513 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@333358 91177308-0d34-0410-b5e6-96231b3b80d8
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332240 91177308-0d34-0410-b5e6-96231b3b80d8
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328806 91177308-0d34-0410-b5e6-96231b3b80d8
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328395 91177308-0d34-0410-b5e6-96231b3b80d8
We can always convert xor %a, -1 into MVN, even in thumb 1 where the -1
would not otherwise be considered a cheap constant. This prevents the
-1's from being pulled out into constants and potentially hoisted.
Differential Revision: https://reviews.llvm.org/D43451
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325573 91177308-0d34-0410-b5e6-96231b3b80d8
The penalty is currently getting applied in a bunch of places where it
doesn't make sense, like bitcasts (which are free) and calls (which
were getting the call penalty applied twice). Instead, just apply the
penalty to binary operators and floating-point casts.
While I'm here, also fix getFPOpCost() to do the right thing in more
cases, so we don't have to dig into function attributes.
Differential Revision: https://reviews.llvm.org/D41522
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@321332 91177308-0d34-0410-b5e6-96231b3b80d8
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
Before, loop unrolling was only enabled for loops with a single
block. This restriction has been removed and replaced by:
- allow a maximum of two exiting blocks,
- a four basic block limit for cores with a branch predictor.
Differential Revision: https://reviews.llvm.org/D38952
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316313 91177308-0d34-0410-b5e6-96231b3b80d8
- Set the default runtime unroll count to 4 and use the newly added
UnrollRemainder option.
- Create loop cost and force unroll for a cost less than 12.
- Disable unrolling on Thumb1 only targets.
Differential Revision: https://reviews.llvm.org/D36134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310997 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Similar to X86, it should be safe to inline callees if their
target-features are a subset of the caller. As some subtarget features
provide different instructions depending on whether they are set or
unset (e.g. ThumbMode and ModeSoftFloat), we use a whitelist of
target-features describing hardware capabilities only.
Reviewers: kristof.beyls, rengolin, t.p.northover, SjoerdMeijer, peter.smith, silviu.baranga, efriedma
Reviewed By: SjoerdMeijer, efriedma
Subscribers: dschuff, efriedma, aemerson, sdardis, javed.absar, arichardson, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D34697
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307889 91177308-0d34-0410-b5e6-96231b3b80d8
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300052 91177308-0d34-0410-b5e6-96231b3b80d8
This patch refactors and strengthens the type checks performed for interleaved
accesses. The primary functional change is to ensure that the interleaved
accesses have valid element types. The added test cases previously failed
because the element type is f128.
Differential Revision: https://reviews.llvm.org/D31817
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299864 91177308-0d34-0410-b5e6-96231b3b80d8
There are no vldN/vstN f16 variants, even with +fullfp16.
We could use the i16 variants, but, in practice, even with +fullfp16,
the f16 sequence leading to the i16 shuffle usually gets scalarized.
We'd need to improve our support for f16 codegen before getting there.
Teach the cost model to consider f16 interleaved operations as
expensive. Otherwise, we are all but guaranteed to end up with
a large block of scalarized vector code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294819 91177308-0d34-0410-b5e6-96231b3b80d8
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291657 91177308-0d34-0410-b5e6-96231b3b80d8
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.
Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.
Differential Revision: https://reviews.llvm.org/D27518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291106 91177308-0d34-0410-b5e6-96231b3b80d8
Materializing something like "-3" can be done as 2 instructions:
MOV r0, #3
MVN r0, r0
This has a cost of 2, not 3. It looks like we were already trying to detect this pattern in TII::getIntImmCost(), but were taking the complement of the zero-extended value instead of the sign-extended value which is unlikely to ever produce a number < 256.
There were no tests failing after changing this... :/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280928 91177308-0d34-0410-b5e6-96231b3b80d8
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.
Differential Revision: http://reviews.llvm.org/D21183
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275382 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes bug: https://llvm.org/bugs/show_bug.cgi?id=28282
Currently the cost model of constant hoisting checks the bit width of the data type of the constants.
However, the actual immediate value is small enough and not need to be hoisted.
This patch checks for the actual bit width needed for the constant.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274073 91177308-0d34-0410-b5e6-96231b3b80d8
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.
I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266464 91177308-0d34-0410-b5e6-96231b3b80d8
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:
+ ConstantHoisting was modifying switch statements. This is simply invalid,
the cases must remain integer constants no matter the notional cost.
+ ConstantHoisting was mangling alloca instructions in the entry block. These
should be handled by FrameLowering, so constants actually have a cost of 0.
Worse, the resulting bitcasts meant they became dynamic allocas.
rdar://25707382
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266260 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).
DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.
One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.
Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.
Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255089 91177308-0d34-0410-b5e6-96231b3b80d8
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253349 91177308-0d34-0410-b5e6-96231b3b80d8
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251490 91177308-0d34-0410-b5e6-96231b3b80d8
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251382 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change limits the minimum cost of an insert/extract
element operation to 2 in cases where this would result
in mixing of NEON and VFP code.
Reviewers: rengolin
Subscribers: mssimpso, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245225 91177308-0d34-0410-b5e6-96231b3b80d8
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244080 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243270 91177308-0d34-0410-b5e6-96231b3b80d8