We had disabled use of TBAA during CodeGen (even when otherwise using AA)
because the ptrtoint/inttoptr used by CGP for address sinking caused BasicAA to
miss basic type punning that it should catch (and, thus, we'd fail to override
TBAA when we should).
However, when AA is in use during CodeGen, CGP now uses normal GEPs and
bitcasts, instead of ptrtoint/inttoptr, when doing address sinking. As a
result, BasicAA should be able to make us do the right thing in the face of
type-punning, and it seems safe to enable use of TBAA again. self-hosting seems
fine on PPC64/Linux on the P7, with TBAA enabled and -misched=shuffle.
Note: We still don't update TBAA when merging stack slots, although because
BasicAA should now catch all such cases, this is no longer a blocking issue.
Nevertheless, I plan to commit code to deal with this properly in the near
future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206093 91177308-0d34-0410-b5e6-96231b3b80d8
The current memory-instruction optimization logic in CGP, which sinks parts of
the address computation that can be adsorbed by the addressing mode, does this
by explicitly converting the relevant part of the address computation into
IR-level integer operations (making use of ptrtoint and inttoptr). For most
targets this is currently not a problem, but for targets wishing to make use of
IR-level aliasing analysis during CodeGen, the use of ptrtoint/inttoptr is a
problem for two reasons:
1. BasicAA becomes less powerful in the face of the ptrtoint/inttoptr
2. In cases where type-punning was used, and BasicAA was used
to override TBAA, BasicAA may no longer do so. (this had forced us to disable
all use of TBAA in CodeGen; something which we can now enable again)
This (use of GEPs instead of ptrtoint/inttoptr) is not currently enabled by
default (except for those targets that use AA during CodeGen), and so aside
from some PowerPC subtargets and SystemZ, there should be no change in
behavior. We may be able to switch completely away from the ptrtoint/inttoptr
sinking on all targets, but further testing is required.
I've doubled-up on a number of existing tests that are sensitive to the
address sinking behavior (including some store-merging tests that are
sensitive to the order of the resulting ADD operations at the SDAG level).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206092 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds patterns to generate the cls instruction ARM64. Includes tests
for 64 bit and 32 bit operands.
rdar://15611957
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206079 91177308-0d34-0410-b5e6-96231b3b80d8
fexhaustive-register-search => exhaustive-register-search
'f' is a Clang thing!
This is related to PR18747.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206075 91177308-0d34-0410-b5e6-96231b3b80d8
-fexhaustive-register-search option to allow an exhaustive search during last
chance recoloring.
This is related to PR18747
Patch by MAYUR PANDEY <mayur.p@samsung.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206072 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetLowering::expandMUL() helper contains lowering code extracted
from the DAGTypeLegalizer and allows the SelectionDAGLegalizer to expand more
ISD::MUL patterns without having to use a library call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206037 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205997 91177308-0d34-0410-b5e6-96231b3b80d8
Refactored stack-protector.ll to use new-style function attributes everywhere
and eliminated unnecessary attributes.
This cleanup is in preparation for an upcoming test change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205996 91177308-0d34-0410-b5e6-96231b3b80d8
AVX supports logical operations using an operand from memory. Unfortunately
because integer operations were not added until AVX2 the AVX1 logical
operation's types were preventing the isel from folding the loads. In a limited
number of cases the peephole optimizer would fold the loads, but most were
missed. This patch adds explicit patterns with appropriate casts in order for
these loads to be folded.
The included test cases run on reduced examples and disable the peephole
optimizer to ensure the folds are being pattern matched.
Patch by Louis Gerbarg <lgg@apple.com>
rdar://16355124
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205938 91177308-0d34-0410-b5e6-96231b3b80d8
FoldConstantArithmetic() only knows how to deal with a few target independent
ISD opcodes. Bail early if it sees a target-specific ISD node. These node do
funny things with operand types which may break the assumptions of the code
that follows, and there's no actual folding that can be done anyway. For example,
non-constant 256 bit vector shifts on X86 have a shift-amount operand that's a
128-bit v4i32 vector regardless of what the first operand type is and that breaks
the assumption that the operand types must match.
rdar://16530923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205937 91177308-0d34-0410-b5e6-96231b3b80d8
In AArch64 i64 to i32 truncate operation is a subregister access.
This allows more opportunities for LSR optmization to eliminate
variables of different types (i32 and i64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205925 91177308-0d34-0410-b5e6-96231b3b80d8
sign/zero/any extensions. However a few places were not checking properly the
property of the load and were turning an indexed load into a regular extended
load. Therefore the indexed value was lost during the process and this was
triggering an assertion.
<rdar://problem/16389332>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205923 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds intrinsics and codegen support for the surface read/write and texture read instructions that take an explicit sampler parameter. Codegen operates on image handles at the PTX level, but falls back to direct replacement of handles with kernel arguments if image handles are not enabled. Note that image handles are explicitly disabled for all target architectures in this change (to be enabled later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205907 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
They behave in accordance with the Has2008 and ABS2008 configuration bits of the processor which are used to select between the 1985 and 2008 versions of IEEE 754. In 1985 mode, these instructions are arithmetic (i.e. they raise invalid operation exceptions when given NaN), in 2008 mode they are non-arithmetic (i.e. they are copies).
nmadd.[ds], and nmsub.[ds] are still subject to -enable-no-nans-fp-math because the ISA spec does not explicitly state that they obey Has2008 and ABS2008.
Fixed the issue with the previous version of this patch (r205628). A pre-existing 'let Predicate =' statement was removing some predicates that were necessary for FP64 to behave correctly.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3274
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205844 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the target-hooks for ARM64 to enable constant hoisting.
This fixes <rdar://problem/14774662> and <rdar://problem/16381500>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205791 91177308-0d34-0410-b5e6-96231b3b80d8
Confusingly, the NEON fmla instructions put the accumulator first but the
scalar versions put it at the end (like the fma lib function & LLVM's
intrinsic).
This should fix PR19345, assuming there's only one issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205758 91177308-0d34-0410-b5e6-96231b3b80d8
Moving these patterns from TableGen files to PerformDAGCombine()
should allow us to generate better code by eliminating unnecessary
shifts and extensions earlier.
This also fixes a bug where the MAD pattern was calling
SimplifyDemandedBits with a 24-bit mask on the first operand
even when the full pattern wasn't being matched. This occasionally
resulted in some instructions being incorrectly deleted from the
program.
v2:
- Fix bug with 64-bit mul
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205731 91177308-0d34-0410-b5e6-96231b3b80d8
It affected callee's stack pop in x86. It is one of devergences between cygwin and mingw since mingw-gcc-4.6.
Added testcases to llvm/test/CodeGen/X86/win32_sret.ll for cygwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205688 91177308-0d34-0410-b5e6-96231b3b80d8
gcc inline asm supports specifying "cc" as a clobber of all condition
registers. Add just enough modeling of the full register to make this work.
Fixed PR19326.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205630 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
They behave in accordance with the Has2008 and ABS2008 configuration bits of the
processor which are used to select between the 1985 and 2008 versions of IEEE
754. In 1985 mode, these instructions are arithmetic (i.e. they raise invalid
operation exceptions when given NaN), in 2008 mode they are non-arithmetic
(i.e. they are copies).
nmadd.[ds], and nmsub.[ds] are still subject to -enable-no-nans-fp-math because
the ISA spec does not explicitly state that they obey Has2008 and ABS2008.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3274
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205628 91177308-0d34-0410-b5e6-96231b3b80d8
When LLVM sees something like (v1iN (vselect v1i1, v1iN, v1iN)) it can
decide that the result is OK (v1i64 is legal on AArch64, for example)
but it still need scalarising because of that v1i1. There was no code
to do this though.
AArch64 and ARM64 have DAG combines to produce efficient code and
prevent that occuring in *most* such situations, but there are edge
cases that they miss. This adds a legalization to cope with that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205626 91177308-0d34-0410-b5e6-96231b3b80d8
There were several overlapping problems here, and this solution is
closely inspired by the one adopted in AArch64 in r201381.
Firstly, scalarisation of v1i1 setcc operations simply fails if the
input types are legal. This is fixed in LegalizeVectorTypes.cpp this
time, and allows AArch64 code to be simplified slightly.
Second, vselect with such a setcc feeding into it ends up in
ScalarizeVectorOperand, where it's not handled. I experimented with an
implementation, but found that whatever DAG came out was rather
horrific. I think Hao's DAG combine approach is a good one for
quality, though there are edge cases it won't catch (to be fixed
separately).
Should fix PR19335.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205625 91177308-0d34-0410-b5e6-96231b3b80d8
The previous patterns directly inserted FMOV or INS instructions into
the DAG for scalar_to_vector & bitconvert patterns. This is horribly
inefficient and can generated lots more GPR <-> FPR register traffic
than necessary.
It's much better to emit instructions the register allocator
understands so it can coalesce the copies when appropriate.
It led to at least one ISelLowering hack to avoid the problems, which
was incorrect for v1i64 (FPR64 has no dsub). It can now be removed
entirely.
This should also fix PR19331.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205616 91177308-0d34-0410-b5e6-96231b3b80d8
Without this change, the llvm_unreachable kicked in. The code pattern
being spotted is rather non-canonical for 128-bit MLAs, but it can
happen and there's no point in generating sub-optimal code for it just
because it looks odd.
Should fix PR19332.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205615 91177308-0d34-0410-b5e6-96231b3b80d8
recoloring cut-offs are encountered and register allocation failed.
This is related to PR18747
Patch by MAYUR PANDEY <mayur.p@samsung.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205601 91177308-0d34-0410-b5e6-96231b3b80d8
Removes unnecessary casts from non-generic address spaces to the generic address
space for certain code patterns.
Patch by Jingyue Wu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205571 91177308-0d34-0410-b5e6-96231b3b80d8
When rematerializing through truncates, the coalescer may produce instructions
with dead defs, but live implicit-defs of subregs:
E.g.
%X1<def,dead> = MOVi64imm 2, %W1<imp-def>; %X1:GPR64, %W1:GPR32
These instructions are live, and their definitions should not be rewritten.
Fixes <rdar://problem/16492408>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205565 91177308-0d34-0410-b5e6-96231b3b80d8
Acording to AMD documentation, the correct opcode for
BFE_INT is 0x5, not 0x4
Fixes Arithm/Absdiff.Mat/3 OpenCV test
Patch by: Bruno Jiménez
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205562 91177308-0d34-0410-b5e6-96231b3b80d8
More updating of tests to be explicit about the target triple rather than
relying on the default target triple supporting ARM mode.
Indicate to lit that object emission is not yet available for Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205545 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205541 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing this via ComputeMaskedBits has two advantages:
+ It actually works. DAGISel doesn't deal with the chains properly
in the previous pattern-based solution, so they never trigger.
+ The information can be used in other DAG combines, as well as the
trivial "get rid of truncs". For example if the trunc is in a
different basic block.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205540 91177308-0d34-0410-b5e6-96231b3b80d8