This is faster and avoids the stream and SmallString state synchronization issue.
resync() is a no-op and may be safely deleted. I'll do so in a follow-up commit.
Reviewed by Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244870 91177308-0d34-0410-b5e6-96231b3b80d8
This causes the other special members (like move and copy construction,
and move assignment) to come through for free. Some code in clang was
depending on the (deprecated, in the original code) copy ctor. Now that
there's no user-defined special members, they're all available without
any deprecation concerns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244835 91177308-0d34-0410-b5e6-96231b3b80d8
This debugger was designed to catch places where the old update API was
failing to be used correctly. As I've removed the update API, it no
longer serves any purpose. We can introduce new debugging aid passes
around any future work w.r.t. updating AAs.
Note that I've updated the documentation here, but really I need to
rewrite the documentation to carefully spell out the ideas around
stateful AA and how things are changing in the AA world. However, I'm
hoping to do that as a follow-up to the refactoring of the AA
infrastructure to work in both old and new pass managers so that I can
write the documentation specific to that world.
Differential Revision: http://reviews.llvm.org/D11984
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244825 91177308-0d34-0410-b5e6-96231b3b80d8
relying on sneaking it out of its AliasAnalysis.
This abuse of AA (to shuffle TLI around rather than explicitly depending
on it) is going away with my refactor of AA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244778 91177308-0d34-0410-b5e6-96231b3b80d8
r243382 changed the behavior to always require a set of memchecks to be
passed to LoopVer. This change restores the prior behavior as an
alternative to the new behavior. This allows the checks to be
implicitly taken from the LAA object.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244763 91177308-0d34-0410-b5e6-96231b3b80d8
This abstracts away the test for "when can we fold across a MachineInstruction"
into the the MI interface, and changes call-frame optimization use the same test
the peephole optimizer users.
Differential Revision: http://reviews.llvm.org/D11945
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244729 91177308-0d34-0410-b5e6-96231b3b80d8
This commit transforms the mips-specific 'MipsCallEntry' subclass of the
'PseudoSourceValue' class into two, target-independent subclasses named
'GlobalValuePseudoSourceValue' and 'ExternalSymbolPseudoSourceValue'.
This change makes it easier to serialize the pseudo source values by removing
target-specific pseudo source values.
Reviewers: Akira Hatanaka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244698 91177308-0d34-0410-b5e6-96231b3b80d8
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244693 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces a new enumerator named 'PSVKind' in the
'PseudoSourceValue' class. This enumerator is now used to distinguish between
the various kinds of pseudo source values.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy - the next two
PseudoSourceValue commits will get rid of the global variable that manages the
pseudo source values and the mips specific MipsCallEntry subclass.
Reviewers: Akira Hatanaka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244687 91177308-0d34-0410-b5e6-96231b3b80d8
This commit updates the documentation comments in PseudoSourceValue.cpp and
PseudoSourceValue.h based on the LLVM's documentation style. It also fixes
several instances of variable names that started with a lowercase letter.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244686 91177308-0d34-0410-b5e6-96231b3b80d8
This commit reformats the files lib/CodeGen/PseudoSourceValue.cpp and
include/llvm/CodeGen/PseudoSourceValue.h using clang-format. This change is
done in preparation for the changes to the pseudo source value object
management and to the PseudoSourceValue's class hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244685 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Check the contents of BBtoRegion during analysis verification. It only takes place if -verify-region-info is passed or LLVM is compiled with XDEBUG.
RegionBase<Tr>::verifyRegion() also checks the RegionInfoBase<Tr>::VerifyRegionInfo flag, which is redundant, but verifyRegion() is public API and might be invoked from other sites. In order to avoid behavioral change, this check is not removed. In any case, no region will be verified unless VerifyRegionInfo is set.
Reviewers: grosser
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244611 91177308-0d34-0410-b5e6-96231b3b80d8
The intention of these is to be a corollary to ISD::FMINNUM/FMAXNUM,
differing only on how NaNs are treated. FMINNUM returns the non-NaN
input (when given one NaN and one non-NaN), FMINNAN returns the NaN
input instead.
This patch includes support for scalarizing, widening and splitting
vectors, but not expansion or softening. The reason is that these
should never be needed - FMINNAN nodes are only going to be created
in one place (SDAGBuilder::visitSelect) and there we'll check if the
node is legal or custom. I could preemptively add expand and soften
code, but I'm fairly opposed to adding code I can't test. It's bad
enough I can't create tests with this patch, but at least this code
will be exercised by the ARM and AArch64 backends fairly shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244581 91177308-0d34-0410-b5e6-96231b3b80d8
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244580 91177308-0d34-0410-b5e6-96231b3b80d8
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244555 91177308-0d34-0410-b5e6-96231b3b80d8
This commit serializes the UsedPhysRegMask register mask from the machine
register information class. The mask is serialized as an inverted
'calleeSavedRegisters' mask to keep the output minimal.
This commit also allows the MIR parser to infer this mask from the register
mask operands if the machine function doesn't specify it.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244548 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves checking the threshold of runtime pointer checks to the vectorization requirements (late diagnostics) and emits a diagnostic that infroms the user the loop would be vectorized if not for exceeding the pointer-check threshold. Clang will also append the options that can be used to allow vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244523 91177308-0d34-0410-b5e6-96231b3b80d8
With this we finally have an ELFFile that is O(1) to construct. This is helpful
for programs like lld which have to do their own section walk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244510 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244489 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.
Reviewers: rengolin
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244449 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Analogously to Function::viewCFG(), RegionInfo::view() and RegionInfo::viewOnly() are meant to be called in debugging sessions. They open a viewer to show how RegionInfo currently understands the region hierarchy.
The functions viewRegion(Function*) and viewRegionOnly(Function*) invoke a fresh region analysis of the function in contrast to viewRegion(RegionInfo*) and viewRegionOnly(RegionInfo*) which show the current analysis result.
Reviewers: grosser
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11875
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244444 91177308-0d34-0410-b5e6-96231b3b80d8
PR24139 contains an analysis of poor register allocation. One of the findings
was that when calculating the spill weight, a rematerializable interval once
split is no longer rematerializable. This is because the isRematerializable
check in CalcSpillWeights.cpp does not follow the copies introduced by live
range splitting (after splitting, the live interval register definition is a
copy which is not rematerializable).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D11686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244439 91177308-0d34-0410-b5e6-96231b3b80d8