Not having this legal led to combine failures, resulting
in dumb things like bitcasts of constants not being folded
away.
The only reason I'm leaving the v_mov_b32 hack that f32
already uses is to avoid madak formation test regressions.
PeepholeOptimizer has an ordering issue where the immediate
fold attempt is into the sgpr->vgpr copy instead of the actual
use. Running it twice avoids that problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289096 91177308-0d34-0410-b5e6-96231b3b80d8
The correct commutable opcode was set to itself, so this
was simply swapping the operands to commute instead of also
changing the opcode to v_subrev_u16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289093 91177308-0d34-0410-b5e6-96231b3b80d8
Multiple metadata values for records such as opencl.ocl.version, llvm.ident
and similar are created after linking several modules. For some of them, notably
opencl.ocl.version, this creates semantic problem because we cannot tell which
version of OpenCL the composite module conforms.
Moreover, such repetitions of identical values often create a huge list of
unneeded metadata, which grows bitcode size both in memory and stored on disk.
It can go up to several Mb when linked against our OpenCL library. Lastly, such
long lists obscure reading of dumped IR.
The pass unifies metadata after linking.
Differential Revision: https://reviews.llvm.org/D25381
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289092 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Attaching !absolute_symbol to a global variable does two things:
1) Marks it as an absolute symbol reference.
2) Specifies the value range of that symbol's address.
Teach the X86 backend to allow absolute symbols to appear in place of
immediates by extending the relocImm and mov64imm32 matchers. Start using
relocImm in more places where it is legal.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105800.html
Differential Revision: https://reviews.llvm.org/D25878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289087 91177308-0d34-0410-b5e6-96231b3b80d8
Since all the DWARF classes are in a DWARFYAML namespace having every class start with DWARF seems like a bit of overkill.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289080 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LC can currently select scalar load for uniform memory access
basing on readonly memory address space only. This restriction
originated from the fact that in HW prior to VI vector and scalar caches
are not coherent. With MemoryDependenceAnalysis we can check that the
memory location corresponding to the memory operand of the LOAD is not
clobbered along the all paths from the function entry.
Reviewers: rampitec, tstellarAMD, arsenm
Subscribers: wdng, arsenm, nhaehnle
Differential Revision: https://reviews.llvm.org/D26917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289076 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantFolding tried to cast one of the scalar indices to a vector
type. Instead, use the vector type only for the first index (which
is the only one allowed to be a vector) and use its scalar type
otherwise.
Fixes PR31250.
Reviewers: majnemer
Differential Revision: https://reviews.llvm.org/D27389
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289073 91177308-0d34-0410-b5e6-96231b3b80d8
The dwarfgen::Generator::StringPool was in a unique_ptr but it was owned by the Allocator member variable so it was being free twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289070 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Most targets set the action for these nodes to Expand even though there
isn't actually any code for them in ExpandNode. Instead, targets simply
relied on the fact that no code generates these nodes as long as the
nodes aren't legal or custom.
However, generating these nodes can be useful e.g. for divide-by-constant
in wider integer types.
Expand of [US]MUL_LOHI will use MULH[US] when legal or custom, and
a sequence of half-width multiplications otherwise. Promote uses a wider
multiply.
This patch intends to not change the generated code, but indirect effects
are possible since expansions/promotions that were previously done in
DAGCombine may now be done in LegalizeDAG.
See D24822 for a change that actually uses the new expansion.
Reviewers: spatel, bkramer, venkatra, efriedma, hfinkel, ast, nadav, tstellarAMD
Subscribers: arsenm, jyknight, nemanjai, wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D24956
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289050 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Without the fix to isFrameOffsetLegal to consider the instruction's
immediate offset, the new test case hits the corresponding assertion in
resolveFrameIndex, because the LocalStackSlotAllocation pass re-uses a
different base register.
With only the fix to isFrameOffsetLegal, code quality reduces in a bunch of
places because frame base registers are added where they're not needed.
This is addressed by properly implementing needsFrameBaseReg, which also
helps to avoid unnecessary zero frame indices in a bunch of other places.
Fixes piglit glsl-1.50/execution/variable-indexing/gs-output-array-vec4-index-wr.shader_test
Reviewers: arsenm, tstellarAMD
Subscribers: qcolombet, kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D27344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289048 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.
Differential Revision: https://reviews.llvm.org/D27215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289043 91177308-0d34-0410-b5e6-96231b3b80d8
I wanted to use the "not" keyword to make sure it does not get lost in between
other checks. MSVC does not like that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289041 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The existing detection of a format member function has a couple of deficiencies:
- the member function does not get detected if one calls formatv with an lvalue,
because the template parameter gets deduced as T&, which fails the is_class
check.
- it also did not work if the function was called with a const variable because
the template parameter would get deduced as const T&, again failing the
is_class check.
This fixes the problem by stripping the references in the uses_format_member
template, to make sure the type is correctly detected as class. It also provides
specializations of the has_FormatMember template for const and non-const members
of the types in order to enable declaring the format member as a "const"
function. I have added tests that verify that formatv can be now called in these
scenarios. As some scenarios could not be verified at runtime (e.g. making sure
that calling a non-const format member on a const object does *not* compile), I
have also added some static_asserts which test the behaviour of the template
classes used internally by formatv().
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27525
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289040 91177308-0d34-0410-b5e6-96231b3b80d8
The relocations for `DIEEntry::EmitValue` were wrong for Win64
(emitting FK_Data_4 instead of FK_SecRel_4). This corrects that
oversight so that the DWARF data is correct in Win64 COFF files.
Fixes PR15393.
Patch by Jameson Nash <jameson@juliacomputing.com> based on a patch
by David Majnemer.
Differential Revision: https://reviews.llvm.org/D21731
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289013 91177308-0d34-0410-b5e6-96231b3b80d8
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.
More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.
DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:
dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();
CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);
dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);
dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);
dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);
StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.
While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.
Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.
Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.
DIEInteger now supports more DW_FORM values.
There are also unit tests that cover:
Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.
Differential Revision: https://reviews.llvm.org/D27326
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289010 91177308-0d34-0410-b5e6-96231b3b80d8
Replace @progbits in the section directive with %progbits, because "@" starts a comment on arm/thumb.
Use b.w branch instruction.
Use .thumb_function and .thumb_set for proper arm/thumb interwork. This way jumptable entry addresses on thumb have bit 0 set (correctly). This does not affect CFI check math, because the address of the jumptable start also has that bit set.
This does not work on thumbv5, because it does not support b.w, and the linker would not insert a veneer (trampoline?) to extend the range of b.n. We may need to do full-range plt-style jumptables on thumbv54, which are 12 bytes per entry. Another option is "push lr; bl; pop pc" (4 bytes) but that needs unwinding instructions, etc.
Differential Revision: https://reviews.llvm.org/D27499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289008 91177308-0d34-0410-b5e6-96231b3b80d8
This abstracts the code for emitting DWARF binary from the DWARFYAML types into reusable interfaces that could be used by ELF and COFF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288990 91177308-0d34-0410-b5e6-96231b3b80d8
The fix committed in r288851 doesn't cover all the cases.
In particular, if we have an instruction with side effects
which has a no non-dbg use not depending on the bits, we still
perform RAUW destroying the dbg.value's first argument.
Prevent metadata from being replaced here to avoid the issue.
Differential Revision: https://reviews.llvm.org/D27534
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288987 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the dwarf2yaml code separated and reusable allowing ELF and COFF to share implementations with MachO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288986 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantExpr instances were emitting code into the current block rather than
the entry block. This meant they didn't necessarily dominate all uses, which is
clearly wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288985 91177308-0d34-0410-b5e6-96231b3b80d8
Since DWARF formatting is agnostic to the object file it is stored in, it doesn't make sense for this to be in the MachOYAML implementation. Pulling it into its own namespace means we could modify the ELF and COFF YAML tools to emit DWARF as well.
In a follow-up patch I will better abstract this in obj2yaml and yaml2obj so that the DWARF bits in the tools can be re-used too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288984 91177308-0d34-0410-b5e6-96231b3b80d8
Having to ask the MIRBuilder for the current function is a little awkward, and
I'm intending to improve how that's threaded through anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288983 91177308-0d34-0410-b5e6-96231b3b80d8
This change makes the yaml tags for the members of the DWARF data match the names of the DWARF sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288981 91177308-0d34-0410-b5e6-96231b3b80d8