The test is failing on the bot because "/subsystem:console" was
truncated for some reason. I don't know why that is happening on
that machine (it is not reproducible on my Windows machine).
In this patch, I'm trying to tame it by making the output shorter.
llvm-svn: 294502
Summary: This adds an option to save temporary files generated during link-time optimization. This can be useful for debugging.
Reviewers: ruiu, pcc
Reviewed By: ruiu, pcc
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D29518
llvm-svn: 294498
Summary: lib/sanitizer_common/sanitizer_win_defs.h defineds WINAPI, which is also defined by standard Windows headers. Redefining it causes warnings during compilation. This change causes us to only define WINAPI if it is not already defined, which avoids the warnings.
Reviewers: rnk, zturner, mpividori
Reviewed By: rnk, mpividori
Subscribers: kubamracek
Differential Revision: https://reviews.llvm.org/D29683
llvm-svn: 294497
The AAPCS ABI is substantially more complicated so that's coming in a separate
patch. For now we can generate correct code for iOS though.
llvm-svn: 294493
Summary:
These flags allow specifying extra arguments to the tool's command
line which don't appear in the compilation database.
Reviewers: alexfh, klimek, bkramer
Subscribers: JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D29699
llvm-svn: 294491
This is a follow-up to https://reviews.llvm.org/D29349. It turns out
that NeedUpgradeToDIGlobalVariableExpression is always necessary when
we encountered a version==0 record because it may always be referenced
via a list of globals in a DICompileUnit. My tests weren't good enough
to catch this though. To trigger this case, we need much older bitcode
produced by LLVM around version 3.7.
<rdar://problem/30404262>
Differential Revision: https://reviews.llvm.org/D29693
llvm-svn: 294488
with temporarily file name fix in testcase.
Original commit message:
-q, --emit-relocs - Generate relocations in output
Simplest implementation:
* no GC case,
* no "/DISCARD/" linkerscript command support.
This patch is extracted from D28612 / D29636,
Relative to PR31579.
Differential revision: https://reviews.llvm.org/D29663
llvm-svn: 294469
Sometimes the MS ABI needs to emit thunks for declarations that don't
have bodies. Destructor thunks make calls to inlinable functions, so
they need line info or LLVM will complain.
Fixes PR31893
llvm-svn: 294465
-q, --emit-relocs - Generate relocations in output
Simplest implementation:
* no GC case,
* no "/DISCARD/" linkerscript command support.
This patch is extracted from D28612 / D29636,
Relative to PR31579.
Differential revision: https://reviews.llvm.org/D29663
llvm-svn: 294464
Summary:
LVI is now depth first, which is optimal for iteration strategy in
terms of work per call. However, the way the results get cached means
it can still go very badly N^2 or worse right now. The overdefined
cache is per-block, because LVI wants to try to get different results
for the same name in different blocks (IE solve the problem
PredicateInfo solves). This means even if we discover a value is
overdefined after going very deep, it doesn't cache this information,
causing it to end up trying to rediscover it again and again. The
same is true for values along the way. In practice, overdefined
anywhere should mean overdefined everywhere (this is how, for example,
SCCP works).
Until we get around to reworking the overdefined cache, we need to
limit the worklist size we process. Note that permanently reverting
the DFS strategy exploration seems the wrong strategy (temporarily
seems fine if we really want). BFS is clearly the wrong approach, it
just gets luckier on some testcases. It's also very hard to design
an effective throttle for BFS. For DFS, the throttle is directly related
to the depth of the CFG. So really deep CFGs will get cutoff, smaller
ones will not. As the CFG simplifies, you get better results.
In BFS, the limit is it's related to the fan-out times average block size,
which is harder to reason about or make good choices for.
Bug being filed about the overdefined cache, but it will require major
surgery to fix it (plumbing predicateinfo through CVP or LVI).
Note: I did not make this number configurable because i'm not sure
anyone really needs to tweak this knob. We run CVP 3 times. On the
testcases i have the slow ones happen in the middle, where CVP is
doing cleanup work other things are effective at. Over the course of
3 runs, we don't see to have any real loss of performance.
I haven't gotten a minimized testcase yet, but just imagine in your
head a testcase where, going *up* the CFG, you have branches, one of
which leads 50000 blocks deep, and the other, to something where the
answer is overdefined immediately. BFS would discover the overdefined
faster than DFS, but do more work to do so. In practice, the right
answer is "once DFS discovers overdefined for a value, stop trying to
get more info about that value" (and so, DFS would normally cache the
overdefined results for every value it passed through in those 50k
blocks, and never do that work again. But it don't, because of the
naming problem)
Reviewers: chandlerc, djasper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29715
llvm-svn: 294463
Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
Summary:
OriginalPrefix is only needed for line comment sections. Moved from the base class to the child class.
No functional changes.
Reviewers: djasper
Reviewed By: djasper
Subscribers: cfe-commits, klimek
Differential Revision: https://reviews.llvm.org/D29716
llvm-svn: 294457
I forgot to remove the neonfp target feature from the test, which means we'd
have trouble selecting VADDS on targets that have neonfp enabled by default.
llvm-svn: 294451
It caused undefined behavior in VarLoc. As far as I investigated,
- VarLoc::VarLoc() treats negative offset value as InvalidKind.
Consider the case that (int64_t)MI.getOperand(1).getImm() is negative and whether it satisfies ((uint64_t)Offset < (1ULL << 32)).
- Comparison operators in VarLoc behave undefined since VarLoc::Loc.Hash is uninitialized in case of InvalidKind.
I guess Offset (in VarLoc) could be made aware of signed, but I am not sure.
So I have reverted it for now.
llvm-svn: 294447
with optimizeMatMulPattern
This patch makes ScheduleTreeOptimizer::optimizeBand return a schedule node
optimized with optimizeMatMulPattern. Otherwise, it could not use the isolate
option, because standardBandOpts could try to tile a band node with anchored
subtree and get the error, since the use of the isolate option causes any tree
containing the node to be considered anchored. Furthermore, it is not intended
to apply standard optimizations, when the matrix multiplication has been
detected.
llvm-svn: 294444
A virtual destructor is needed, since the derived classes are stored in
`iplist<PredicateBase> AllInfos;` and, apparently, ilist_node doesn't have a
virtual destructor.
llvm-svn: 294443
Add a register bank for floating point values and select simple instructions
using them (add, copies from GPR).
This assumes that the hardware can cope with a single precision add (VADDS)
instruction, so the legalizer will treat G_FADD as legal and the instruction
selector will refuse to select if the hardware doesn't support it. In the future
we'll want to be more careful about this, and legalize to libcalls if we have to
use soft float.
llvm-svn: 294442