alternative register allocator that does not require LiveIntervals by specifying
it on the command-line for a target that has StrongPHIElimination enabled by
default.
These checks are pretty meaningless anyways, since StrongPHIElimination and
PHIElimination are never used at the same time.
llvm-svn: 122176
use before rematerializing the load.
This allows us to produce:
addps LCPI0_1(%rip), %xmm2
Instead of:
movaps LCPI0_1(%rip), %xmm3
addps %xmm3, %xmm2
Saving a register and an instruction. The standard spiller already knows how to
do this.
llvm-svn: 122133
the loop predecessors.
The register can be live-out from a predecessor without being live-in to the
loop header if there is a critical edge from the predecessor.
llvm-svn: 122123
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
llvm-svn: 122113
may be called. If the entry block is empty, the insertion point iterator will be
the "end()" value. Calling ->getParent() on it (among others) causes problems.
Modify materializeFrameBaseRegister to take the machine basic block and insert
the frame base register at the beginning of that block. (It's very similar to
what the code does all ready. The only difference is that it will always insert
at the beginning of the entry block instead of after a previous materialization
of the frame base register. I doubt that that matters here.)
<rdar://problem/8782198>
llvm-svn: 122104
BUILD_VECTOR operands where the element type is not legal. I had previously
changed this code to insert TRUNCATE operations, but that was just wrong.
llvm-svn: 122102
the operand uses the same register as a tied operand:
%r1 = add %r1, %r1
If add were a three-address instruction, kill flags would be required on at
least one of the uses. Since it is a two-address instruction, the tied use
operand must not have a kill flag.
This change makes the kill flag on the untied use operand optional.
llvm-svn: 122082
This is a three-way interval list intersection between a virtual register, a
live interval union, and a loop. It will be used to identify interference-free
loops for live range splitting.
llvm-svn: 122034
A MachineLoopRange contains the intervals of slot indexes covered by the blocks
in a loop. This representation of the loop blocks is more efficient to compare
against interfering registers during register coalescing.
llvm-svn: 121917
Bypass loops have the current live range live through, but contain no uses or
defs. Splitting around a bypass loop can free registers for other uses inside
the loop by spilling the split range.
llvm-svn: 121871
regB = move RCX
regA = op regB, regC
RAX = move regA
where both regB and regC are killed. If regB is constrainted to non-compatible
physical registers but regC is not constrainted at all, then it's better to
commute the instruction.
movl %edi, %eax
shlq $32, %rcx
leaq (%rcx,%rax), %rax
=>
movl %edi, %eax
shlq $32, %rcx
orq %rcx, %rax
rdar://8762995
llvm-svn: 121793
when the wider type is legal. This allows us to compile:
define zeroext i16 @test1(i16 zeroext %x) nounwind {
entry:
%div = udiv i16 %x, 33
ret i16 %div
}
into:
test1: # @test1
movzwl 4(%esp), %eax
imull $63551, %eax, %eax # imm = 0xF83F
shrl $21, %eax
ret
instead of:
test1: # @test1
movw $-1985, %ax # imm = 0xFFFFFFFFFFFFF83F
mulw 4(%esp)
andl $65504, %edx # imm = 0xFFE0
movl %edx, %eax
shrl $5, %eax
ret
Implementing rdar://8760399 and example #4 from:
http://blog.regehr.org/archives/320
We should implement the same thing for [su]mul_hilo, but I don't
have immediate plans to do this.
llvm-svn: 121696
for each constant pool entry. Using WriteTypeSymbolic here takes time
proportional to the size of the module, for each constant pool entry.
This speeds up -verbose-asm llc on 252.eon (a random testcase at my disposal)
from 4.4s to 2.137s. llc takes 2.11s with asm-verbose off, so this is now a
pretty reasonable cost for verbose comments.
llvm-svn: 121691
The spiller should only spill. The register allocator will drive live range
splitting, it has the needed information about register pressure and
interferences.
llvm-svn: 121590
registers for a given virtual register.
Reserved registers are filtered from the allocation order, and any valid hint is
returned as the first suggestion.
For target dependent hints, a number of arcane target hooks are invoked.
llvm-svn: 121497
references instead.
Similarly, IntervalMap::begin() is almost as expensive as find(), so use find(x)
instead of begin().advanceTo(x);
This makes RegAllocBasic run another 5% faster.
llvm-svn: 121344
abstract priority queue interface in subclasses that want to override the
priority calculations.
Subclasses must provide a getPriority() implementation instead.
This approach requires less code as long as priorities are expressable as simple
floats, and it avoids the dangers of defining potentially expensive priority
comparison functions.
It also should speed up priority_queue operations since they no longer have to
chase pointers when comparing registers. This is not measurable, though.
Preferably, we shouldn't use floats to guide code generation. The use of floats
here is derived from the use of floats for spill weights. Spill weights have a
dynamic range that doesn't lend itself easily to a fixpoint implementation.
When someone invents a stable spill weight representation, it can be reused for
allocation priorities.
llvm-svn: 121294
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.
llvm-svn: 121274
This new register allocator is initially identical to RegAllocBasic, but it will
receive all of the tricks that RegAllocBasic won't get.
RegAllocGreedy will eventually replace linear scan.
llvm-svn: 121234
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
The StrongPHIElimination pass did not work, and nobody has worked on it for two
years.
A rewrite is underway, so I am leaving this shell pass instead of deleting it
completely.
llvm-svn: 120830
Scan the MachineFunction for DBG_VALUE instructions, and replace them with a
data structure similar to LiveIntervals. The live range of a DBG_VALUE is
determined by propagating it down the dominator tree until a new DBG_VALUE is
found. When a DBG_VALUE lives in a register, its live range is confined to the
live range of the register's value.
LiveDebugVariables runs before coalescing, so DBG_VALUEs are not artificially
extended when registers are joined.
The missing half will recreate DBG_VALUE instructions from the intervals when
register allocation is complete.
The pass is disabled by default. It can be enabled with the temporary command
line option -live-debug-variables.
llvm-svn: 120636
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
llvm-svn: 120501
in favor of the widespread llvm style. Capitalize variables and add
newlines for visual parsing. Rename variables for readability.
And other cleanup.
llvm-svn: 120490
This analysis is going to run immediately after LiveIntervals. It will stay
alive during register allocation and keep track of user variables mentioned in
DBG_VALUE instructions.
When the register allocator is moving values between registers and the stack, it
is very hard to keep track of DBG_VALUE instructions. We usually get it wrong.
This analysis maintains a data structure that makes it easy to update DBG_VALUE
instructions.
llvm-svn: 120385
so don't claim they are. They are allocated using DAG.getNode, so attempts
to access MemSDNode fields results in reading off the end of the allocated
memory. This fixes crashes with "llc -debug" due to debug code trying to
print MemSDNode fields for these barrier nodes (since the crashes are not
deterministic, use valgrind to see this). Add some nasty checking to try
to catch this kind of thing in the future.
llvm-svn: 119901
MCStreamer instead of just MCObjectStreamer. Address changes cannot
be as efficient as we have to use DW_LNE_set_addres, but at least
most of the logic is shared.
This will be used so that, with CodeGen still using EmitDwarfLocDirective,
llvm-gcc is able to produce debug_line sections without needing an
assembler that supports .loc.
llvm-svn: 119777
if the extension types were not the same. The result was that if you
fed a select with sext and zext loads, as in the testcase, then it
would get turned into a zext (or sext) of the select, which is wrong
in the cases when it should have been an sext (resp. zext). Reported
and diagnosed by Sebastien Deldon.
llvm-svn: 119728
and testing is easier. A good example is the unknown-location.ll test that
now can just look for ".loc 1 0 0". We also don't use a DW_LNE_set_address for
every address change anymore.
llvm-svn: 119613
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
llvm-svn: 119548
SrcMgrDiagHandler, we can improve clang diagnostics for inline asm:
instead of reporting them on a source line of the original line,
we can report it on the correct line wherever the string literal came
from. For something like this:
void foo() {
asm("push %rax\n"
".code32\n");
}
we used to get this: (note that the line in t.c isn't helpful)
t.c:4:7: error: warning: ignoring directive for now
asm("push %rax\n"
^
<inline asm>:2:1: note: instantiated into assembly here
.code32
^
now we get:
t.c:5:8: error: warning: ignoring directive for now
".code32\n"
^
<inline asm>:2:1: note: instantiated into assembly here
.code32
^
Note that we're pointing to line 5 properly now.
llvm-svn: 119488
cookie argument to the SourceMgr diagnostic stuff. This cleanly separates
LLVMContext's inlineasm handler from the sourcemgr error handling
definition, increasing type safety and cleaning things up.
llvm-svn: 119486
Always spill the full representative register at any point where any subregister
is live.
This fixes PR8620 which caused the old logic to get confused and not spill
anything at all.
The fundamental problem here is that the coalescer is too aggressive about
physical register coalescing. It sometimes makes it impossible to allocate
registers without these emergency spills.
llvm-svn: 119375
The live range of a register defined by an early clobber starts at the use slot,
not the def slot.
Except when it is an early clobber tied to a use operand. Then it starts at the
def slot like a standard def.
llvm-svn: 119305
live ranges for the spill register are also defined at the use slot instead of
the normal def slot.
This fixes PR8612 for the inline spiller. A use was being allocated to the same
register as a spilled early clobber def.
This problem exists in all the spillers. A fix for the standard spiller is
forthcoming.
llvm-svn: 119182
catastrophic compilation time in the event of unreasonable LLVM
IR. Code quality is a separate issue--someone upstream needs to do a
better job of reducing to llvm.memcpy. If the situation can be reproduced with
any supported frontend, then it will be a separate bug.
llvm-svn: 118904
it makes no sense for allocation_order iterators to visit reserved regs.
The inline spiller depends on AliasAnalysis.
Manage the Query state to avoid uninitialized or stale results.
llvm-svn: 118800
This is the first small step towards using closed intervals for liveness instead
of the half-open intervals we're using now.
We want to be able to distinguish between a SlotIndex that represents a variable
being live-out of a basic block, and an index representing a variable live-in to
its successor.
That requires two separate indexes between blocks. One for live-outs and one for
live-ins.
With this change, getMBBEndIdx(MBB).getPrevSlot() becomes stable so it stays
greater than any instructions inserted at the end of MBB.
llvm-svn: 118747
Whenever splitting wants to insert a copy, it checks if the value can be
rematerialized cheaply instead.
Missing features:
- Delete instructions when all uses have been rematerialized.
- Truncate live ranges to the remaining uses after rematerialization.
llvm-svn: 118702
benchmarks hitting an assertion.
Adds LiveIntervalUnion::collectInterferingVRegs.
Fixes "late spilling" by checking for any unspillable live vregs among
all physReg aliases.
llvm-svn: 118701
handle cases in which a register is unavailable for spill code.
Adds LiveIntervalUnion::extract. While processing interferences on a
live virtual register, reuses the same Query object for each
physcial reg.
llvm-svn: 118423
to perform the copy, which may be of lots of memory [*]. It would be good if the
fall-back code generated something reasonable, i.e. did the copy in a loop, rather
than vast numbers of loads and stores. Add a note about this. Currently target
specific code seems to always kick in so this is more of a theoretical issue rather
than a practical one now that X86 has been fixed.
[*] It's amazing how often people pass mega-byte long arrays by copy...
llvm-svn: 118275
This way, InlineSpiller does the same amount of splitting as the standard
spiller. Splitting should really be guided by the register allocator, and
doesn't belong in the spiller at all.
llvm-svn: 118216
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
llvm-svn: 118167
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
llvm-svn: 118135
BB#1: derived from LLVM BB %bb.nph28
Live Ins: %AL
Predecessors according to CFG: BB#0
TEST8rr %reg16384<kill>, %reg16384, %EFLAGS<imp-def>; GR8:%reg16384
JNE_4 <BB#2>, %EFLAGS<imp-use,kill>
JMP_4 <BB#2>
Successors according to CFG: BB#2 BB#2
These double CFG edges only ever occur in bugpoint-generated code, so there is
no need to attempt something clever.
llvm-svn: 117992