- Eliminate TargetInstrInfo::isIdentical and replace it with produceSameValue. In the default case, produceSameValue just checks whether two machine instructions are identical (except for virtual register defs). But targets may override it to check for unusual cases (e.g. ARM pic loads from constant pools).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97628 91177308-0d34-0410-b5e6-96231b3b80d8
now that isel handles chains more aggressively. This also
allows us to make isLegalToFold non-virtual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97597 91177308-0d34-0410-b5e6-96231b3b80d8
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97596 91177308-0d34-0410-b5e6-96231b3b80d8
the opc string passed in, since it's a given from the class inheritance of T2sI.
The fixed the extra 's' in adcss & sbcss when disassembly printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97582 91177308-0d34-0410-b5e6-96231b3b80d8
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97555 91177308-0d34-0410-b5e6-96231b3b80d8
Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97354 91177308-0d34-0410-b5e6-96231b3b80d8
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97345 91177308-0d34-0410-b5e6-96231b3b80d8
o Parallel addition and subtraction, signed/unsigned
o Miscellaneous operations: QADD, QDADD, QSUB, QDSUB
o Unsigned sum of absolute differences [and accumulate]: USAD8, USADA8
o Signed/Unsigned saturate: SSAT, SSAT16, USAT, USAT16
o Signed multiply accumulate long (halfwords): SMLAL<x><y>
o Signed multiply accumulate/subtract [long] (dual): SMLAD[x], SMLALD[X], SMLSD[X], SMLSLD[X]
o Signed dual multiply add/subtract [long]: SMUAD[X], SMUSD[X]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97276 91177308-0d34-0410-b5e6-96231b3b80d8
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97275 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC floating point registers can represent both f32 and f64 via the
two register classes F4RC and F8RC. F8RC is considered a subclass of F4RC to
allow cross-class coalescing. This coalescing only affects whether registers
are spilled as f32 or f64.
Spill slots must be accessed with load/store instructions corresponding to the
class of the spilled register. PPCInstrInfo::foldMemoryOperandImpl was looking
at the instruction opcode which is wrong.
X86 has similar floating point register classes, but doesn't try to fold
memory operands, so there is no problem there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97262 91177308-0d34-0410-b5e6-96231b3b80d8
Previously LoopStrengthReduce would sometimes be unable to find
a legal formula, causing an assertion failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97226 91177308-0d34-0410-b5e6-96231b3b80d8
object construction. There is no provision to change them when the
code for a function generated.
So we have to change these names while printing assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97213 91177308-0d34-0410-b5e6-96231b3b80d8