variable declaration as an argument because we want that address
anyhow for our debug information.
This seems to fix rdar://9965111, at least we have more debug
information than before and from reading the assembly it appears
to be the correct location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151335 91177308-0d34-0410-b5e6-96231b3b80d8
The tied source operand of tMUL is the second source operand, not the
first like every other two-address thumb instruction. Special case it
in the size reduction pass to make sure we create the tMUL instruction
properly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151315 91177308-0d34-0410-b5e6-96231b3b80d8
bits of the value carying the boolean condition, as their contents
are undefined. This fixes rdar://10887484.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151310 91177308-0d34-0410-b5e6-96231b3b80d8
rdar://10873652
As part of this I updated the llvm-mc disassembler C API to always call the
SymbolLookUp call back even if there is no getOpInfo call back. If there is a
getOpInfo call back that is tried first and then if that gets no information
then the SymbolLookUp is called. I also made the code more robust by
memset(3)'ing to zero the LLVMOpInfo1 struct before then setting
SymbolicOp.Value before for the call to getOpInfo. And also don't use any
values from the LLVMOpInfo1 struct if getOpInfo returns 0. And also don't
use any of the ReferenceType or ReferenceName values from SymbolLookUp if it
returns NULL. rdar://10873563 and rdar://10873683
For the X86 target also fixed bugs so the annotations get printed.
Also fixed a few places in the ARM target that was not producing symbolic
operands for some instructions. rdar://10878166
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151267 91177308-0d34-0410-b5e6-96231b3b80d8
value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151224 91177308-0d34-0410-b5e6-96231b3b80d8
The standard function epilog includes a .size directive, but ppc64 uses
an alternate local symbol to tag the actual start of each function.
Until recently, binutils accepted the .size directive as:
.size test1, .Ltmp0-test1
however, using this directive with recent binutils will result in the error:
.size expression for XXX does not evaluate to a constant
so we must use the label which actually tags the start of the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151200 91177308-0d34-0410-b5e6-96231b3b80d8
Add some data structures to represent for loops. These will be
referenced during object processing to do any needed iteration and
instantiation.
Add foreach keyword support to the lexer.
Add a mode to indicate that we're parsing a foreach loop. This allows
the value parser to early-out when processing the foreach value list.
Add a routine to parse foreach iteration declarations. This is
separate from ParseDeclaration because the type of the named value
(the iterator) doesn't match the type of the initializer value (the
value list). It also needs to add two values to the foreach record:
the iterator and the value list.
Add parsing support for foreach.
Add the code to process foreach loops and create defs based
on iterator values.
Allow foreach loops to be matched at the top level.
When parsing an IDValue check if it is a foreach loop iterator for one
of the active loops. If so, return a VarInit for it.
Add Emacs keyword support for foreach.
Add VIM keyword support for foreach.
Add tests to check foreach operation.
Add TableGen documentation for foreach.
Support foreach with multiple objects.
Support non-braced foreach body with one object.
Do not require types for the foreach declaration. Assume the iterator
type from the iteration list element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151164 91177308-0d34-0410-b5e6-96231b3b80d8
the dominance once the dominates method is fixed and why we can use the builder's
insertion point.
Fixes pr12048.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151125 91177308-0d34-0410-b5e6-96231b3b80d8
This test case was way too strict, matching the entire assembly output.
Every non-trivial change to the ppc backend or -O0 pipeline required
the test to be updated.
It should be replaced with a test of the specific vaarg feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151105 91177308-0d34-0410-b5e6-96231b3b80d8
they'll be simple enough to simulate, and to reduce the chance we'll encounter
equal but different simple pointer constants.
This removes the symptoms from PR11352 but is not a full fix. A proper fix would
either require a guarantee that two constant objects we simulate are folded
when equal, or a different way of handling equal pointers (ie., trying a
constantexpr icmp on them to see whether we know they're equal or non-equal or
unsure).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151093 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation is not safe in some pathological cases (signed icmp of pointers should be an
extremely rare thing, but it's valid IR!). Add an explanatory comment.
Kudos to Duncan for pointing out this edge case (and not giving up explaining it until I finally got it).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151055 91177308-0d34-0410-b5e6-96231b3b80d8
ecx = mov eax
al = mov ch
The second copy is not a nop because the sub-indices of ecx,ch is not the
same of that of eax/al.
Re-enabled machine-cp.
PR11940
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151002 91177308-0d34-0410-b5e6-96231b3b80d8
- Ignore pointer casts.
- Also expand GEPs that aren't constantexprs when they have one use or only constant indices.
- We now compile "&foo[i] - &foo[j]" into "i - j".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150961 91177308-0d34-0410-b5e6-96231b3b80d8
the cast. If we do, we can end up with
inst1
--------------- < Insertion point
dbg inst
new inst
instead of the desired
inst1
new inst
--------------- < Insertion point
dbg inst
Another option would be for InsertNoopCastOfTo (or its callers) to move the
insertion point and we would end up with
inst1
dbg inst
new inst
--------------- < Insertion point
but that complicates the callers. This fixes PR12018 (and firefox's build).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150884 91177308-0d34-0410-b5e6-96231b3b80d8
metadata may still unwind, but only in ways that the ARC
optimizer doesn't need to consider. This permits more
aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150829 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to Anton, Duncan and Rafael for helping me track this down.
Pointy hat to Rafael for introducing the bug in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150811 91177308-0d34-0410-b5e6-96231b3b80d8
useful to represent a variable that is const in the source but can't be constant
in the IR because of a non-trivial constructor. If globalopt evaluates the
constructor, and there was an invariant.start with no matching invariant.end
possible, it will mark the global constant afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150794 91177308-0d34-0410-b5e6-96231b3b80d8
processor, due to the Atom scheduler producing an instruction sequence that is
different from that which is expected.
Patch by Michael Spencer!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150736 91177308-0d34-0410-b5e6-96231b3b80d8
that are greater than the vector element type. For example BUILD_VECTOR
of type <1 x i1> with a constant i8 operand.
This patch fixes the assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150477 91177308-0d34-0410-b5e6-96231b3b80d8
This folds a simple loop tail into a loop latch. It covers the common (in fortran) case of postincrement loops. It's a "free" way to expose this type of loop to downstream loop optimizations that bail out on non-canonical loops (getLoopLatch is a heavily used check).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150439 91177308-0d34-0410-b5e6-96231b3b80d8
If the DEC node had more than one user, it was doing this lowering but
leaving the original DEC node around and so decrementing twice.
Fixes PR11964.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150356 91177308-0d34-0410-b5e6-96231b3b80d8
v8i8 -> v8i32 on AVX machines. The codegen often scalarizes ANY_EXTEND nodes.
The DAGCombiner has two optimizations that can mitigate the problem. First,
if all of the operands of a BUILD_VECTOR node are extracted from an ZEXT/ANYEXT
nodes, then it is possible to create a new simplified BUILD_VECTOR which uses
UNDEFS/ZERO values to eliminate the scalar ZEXT/ANYEXT nodes.
Second, another dag combine optimization lowers BUILD_VECTOR into a shuffle
vector instruction.
In the case of zext v8i8->v8i32 on AVX, a value in an XMM register is to be
shuffled into a wide YMM register.
This patch modifes the second optimization and allows the creation of
shuffle vectors even when the newly generated vector and the original vector
from which we extract the values are of different types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150340 91177308-0d34-0410-b5e6-96231b3b80d8
Module flags are key-value pairs associated with the module. They include a
'behavior' value, indicating how module flags react when mergine two
files. Normally, it's just the union of the two module flags. But if two module
flags have the same key, then the resulting flags are dictated by the behaviors.
Allowable behaviors are:
Error
Emits an error if two values disagree.
Warning
Emits a warning if two values disagree.
Require
Emits an error when the specified value is not present
or doesn't have the specified value. It is an error for
two (or more) llvm.module.flags with the same ID to have
the Require behavior but different values. There may be
multiple Require flags per ID.
Override
Uses the specified value if the two values disagree. It
is an error for two (or more) llvm.module.flags with the
same ID to have the Override behavior but different
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150300 91177308-0d34-0410-b5e6-96231b3b80d8
This allows BBVectorize to check the "unknown instruction" list in the
alias sets. This is important to prevent instruction fusing from reordering
function calls. Resolves PR11920.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150250 91177308-0d34-0410-b5e6-96231b3b80d8
is that patterns no longer match for vectors of booleans, because you only get
ConstantDataVector when the vector element type is i8, i16, etc, not when it is
i1). Original commit message:
Remove some dead code and tidy things up now that vectors use ConstantDataVector
instead of always using ConstantVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150246 91177308-0d34-0410-b5e6-96231b3b80d8
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalOpt runs early in the pipeline (before inlining) and complex class
hierarchies often introduce bitcasts or GEPs which weren't optimized away.
Teach it to ignore side-effect free instructions instead of depending on
other passes to remove them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150174 91177308-0d34-0410-b5e6-96231b3b80d8
* Most of the transforms come through intact by having each transformed load or
store copy the ordering and synchronization scope of the original.
* The transform that turns a global only accessed in main() into an alloca
(since main is non-recursive) with a store of the initial value uses an
unordered store, since it's guaranteed to be the first thing to happen in main.
(Threads may have started before main (!) but they can't have the address of a
function local before the point in the entry block we insert our code.)
* The heap-SRoA transforms are disabled in the face of atomic operations. This
can probably be improved; it seems odd to have atomic accesses to an alloca
that doesn't have its address taken.
AnalyzeGlobal keeps track of the strongest ordering found in any use of the
global. This is more information than we need right now, but it's cheap to
compute and likely to be useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149847 91177308-0d34-0410-b5e6-96231b3b80d8
logic by half: isOnlyReachableViaThisEdge was trying to be clever and
handle the case of a branch to a basic block which is contained in a
loop. This costs a domtree lookup and is completely useless due to
GVN's position in the pass pipeline: all loops have preheaders at this
point, which means it is enough for isOnlyReachableViaThisEdge to check
that Dst has only one predecessor. (I checked this theoretical argument
by running over the entire nightly testsuite, and indeed it is so!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149838 91177308-0d34-0410-b5e6-96231b3b80d8
By default, boost the chain depth contribution of loads and stores. This will allow a load/store pair to vectorize even when it would not otherwise be long enough to satisfy the chain depth requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149761 91177308-0d34-0410-b5e6-96231b3b80d8
In this patch we optimize this pattern and convert the sequence into extract op of a narrow type.
This allows the BUILD_VECTOR dag optimizations to construct efficient shuffle operations in many cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149692 91177308-0d34-0410-b5e6-96231b3b80d8
needed to emit a 64-bit gp-relative relocation entry. Make changes necessary
for emitting jump tables which have entries with directive .gpdword. This patch
does not implement the parts needed for direct object emission or JIT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149668 91177308-0d34-0410-b5e6-96231b3b80d8
PHI nodes which were matched, rather than climbing up the
original PHI node's operands to rediscover PHI nodes for
recording, since the PHI nodes found that are not
necessarily part of the matched set.
This fixes rdar://10589171.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149654 91177308-0d34-0410-b5e6-96231b3b80d8
more than two adjacent ranges needed to be merged. The new version should be
able to handle an arbitrary sequence of adjancent ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149588 91177308-0d34-0410-b5e6-96231b3b80d8
Adds an instruction itinerary to all x86 instructions, giving each a default latency of 1, using the InstrItinClass IIC_DEFAULT.
Sets specific latencies for Atom for the instructions in files X86InstrCMovSetCC.td, X86InstrArithmetic.td, X86InstrControl.td, and X86InstrShiftRotate.td. The Atom latencies for the remainder of the x86 instructions will be set in subsequent patches.
Adds a test to verify that the scheduler is working.
Also changes the scheduling preference to "Hybrid" for i386 Atom, while leaving x86_64 as ILP.
Patch by Preston Gurd!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149558 91177308-0d34-0410-b5e6-96231b3b80d8
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149547 91177308-0d34-0410-b5e6-96231b3b80d8
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149468 91177308-0d34-0410-b5e6-96231b3b80d8
Changing arguments from being passed as fixed to varargs is unsafe, as
the ABI may require they be handled differently (stack vs. register, for
example).
Remove two tests which rely on the bitcast being folded into the direct
call, which is exactly the transformation that's unsafe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149457 91177308-0d34-0410-b5e6-96231b3b80d8
symbol from an assignment. In this case the symbol did not have a fragment so
MCObjectWriter::IsSymbolRefDifferenceFullyResolved() should not have been
calling IsSymbolRefDifferenceFullyResolvedImpl() with a NULL fragment and should
just have returned false in that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149442 91177308-0d34-0410-b5e6-96231b3b80d8
vectors of all one bits to be printed more cleverly in the AsmPrinter.
Unfortunately, the byte value for all one bits is the same with
-fsigned-char as the error return of '-1'. Force this to be the unsigned
byte value when returning it to avoid this problem, and update the test
case for the shiny new behavior.
Yay for building LLVM and Clang with -funsigned-char.
Chris, please review, and let me know if there is any reason to not
desire this change. It seems good on the surface, and certainly intended
based on the code written.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149299 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately I also had to disable constant-pool-sharing.ll the code it tests has been
updated to use the IL logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149148 91177308-0d34-0410-b5e6-96231b3b80d8
The Win64 calling convention has xmm6-15 as callee-saved while still
clobbering all ymm registers.
Add a YMM_HI_6_15 pseudo-register that aliases the clobbered part of the
ymm registers, and mark that as call-clobbered. This allows live xmm
registers across calls.
This hack wouldn't be necessary with RegisterMask operands representing
the call clobbers, but they are not quite operational yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149088 91177308-0d34-0410-b5e6-96231b3b80d8
MachineBasicBlock::canFallThrough(). We're interested in the state of the
instruction (i.e., is this a barrier or not?), not if the instruction is
predicable or not.
rdar://10501092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149070 91177308-0d34-0410-b5e6-96231b3b80d8
The live range of the source register may be extended when a redundant
copy is eliminated. Make sure any kill flags between the two copies are
cleared.
This fixes PR11765.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149069 91177308-0d34-0410-b5e6-96231b3b80d8
This enables the linker to match concrete relocation types (absolute or relative) with whatever library or C++ support code is being linked against.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149057 91177308-0d34-0410-b5e6-96231b3b80d8
. "fptosi" and "fptoui" IR instructions are defined with round-to-zero rounding mode.
. Currently for AVX mode for <4xdouble> and <8xdouble> the "VCVTPD2DQ.128" and "VCVTPD2DQ.256" instructions are selected (for .fp_to_sint. DAG node operation ) by AVX codegen. However they use round-to-nearest-even rounding mode.
. Consequently, the conversion produces incorrect numbers.
The fix is to replace selection of VCVTPD2DQ instructions with VCVTTPD2DQ instructions. The latter use truncate (i.e. round-to-zero) rounding mode.
As .fp_to_sint. DAG node operation is used only for lowering of "fptosi" and "fptoui" IR instructions, the fix in X86InstrSSE.td definition file doesn.t have an impact on other LLVM flows.
The patch includes changes in the .td file, LIT test for the changes and a fix in a legacy LIT test (which produced asm code conflicting with LLVN IR spec).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149056 91177308-0d34-0410-b5e6-96231b3b80d8
This boils down to using MachineOperand::readsReg() more.
This fixes PR11829 where a use ended up after the first def when
lowering REG_SEQUENCE instructions involving IMPLICIT_DEFs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148996 91177308-0d34-0410-b5e6-96231b3b80d8
"Although a Thumb2 instruction, the IT mnemonic shall be permitted in
ARM mode, and the condition verified to match the condition code(s)
on the following instruction(s)."
PR11853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148969 91177308-0d34-0410-b5e6-96231b3b80d8
savings from a pointer argument becoming an alloca. Sometimes callees will even
compare a pointer to null and then branch to an otherwise unreachable block!
Detect these cases and compute the number of saved instructions, instead of
bailing out and reporting no savings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148941 91177308-0d34-0410-b5e6-96231b3b80d8
- Use MipsAnalyzeImmediate to expand immediates that do not fit in 16-bit.
- Change the types of variables so that they are sufficiently large to handle
64-bit pointers.
- Emit instructions to set register $28 in a function prologue after
instructions which store callee-saved registers have been emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148917 91177308-0d34-0410-b5e6-96231b3b80d8
Add a test case to show fewer instructions are needed to load an immediate
with the new way of loading immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148908 91177308-0d34-0410-b5e6-96231b3b80d8
A REG_SEQUENCE instruction is lowered into a sequence of partial defs:
%vreg7:ssub_0<def,undef> = COPY %vreg20:ssub_0
%vreg7:ssub_1<def> = COPY %vreg2
%vreg7:ssub_2<def> = COPY %vreg2
%vreg7:ssub_3<def> = COPY %vreg2
The first def needs an <undef> flag to indicate it is the beginning of
the live range, while the other defs are read-modify-write. Previously,
we depended on LiveIntervalAnalysis to notice and fix the missing
<def,undef>, but that solution was never robust, it was causing problems
with ProcessImplicitDefs and the lowering of chained REG_SEQUENCE
instructions.
This fixes PR11841.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148879 91177308-0d34-0410-b5e6-96231b3b80d8
When not using subsections via symbols, the assembler can resolve
symbol differences (including pcrel references) to non-local
labels at assembly time, not just those in the same atom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148865 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new option --arm-enable-ehabi-descriptors that
enables emitting unwinding descriptors. This provides a mode with a
working backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148800 91177308-0d34-0410-b5e6-96231b3b80d8
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148759 91177308-0d34-0410-b5e6-96231b3b80d8
Let the generic token alias definitions handle the data subtype
suffices. We don't need explicit versions for each.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148718 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148686 91177308-0d34-0410-b5e6-96231b3b80d8
returns false in the event the computation feeding into the pointer is
unreachable, which maybe ought to be true -- but this is at least consistent
with undef->isDereferenceablePointer().) Fixes PR11825!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148671 91177308-0d34-0410-b5e6-96231b3b80d8
We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148568 91177308-0d34-0410-b5e6-96231b3b80d8
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148556 91177308-0d34-0410-b5e6-96231b3b80d8
can't handle. Also don't produce non-zero results for things which won't be
transformed by SROA at all just because we saw the loads/stores before we saw
the use of the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148536 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
If the fixup is out of range for the Thumb1 instruction, relax it
to the Thumb2 encoding instead.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148424 91177308-0d34-0410-b5e6-96231b3b80d8