The code emitted is what would be expected for the small model, so it
shouldn't be used when objects can be the full 64-bits away.
This fixes MCJIT tests on Linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209585 91177308-0d34-0410-b5e6-96231b3b80d8
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209580 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
After the load/store refactoring, we were sometimes trying to feed a
GPR64 into a 32-bit register offset operand. This failed in
copyPhysReg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209566 91177308-0d34-0410-b5e6-96231b3b80d8
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209554 91177308-0d34-0410-b5e6-96231b3b80d8
It's an unnecessary detail for this test and just gets in the way when
making unrelated changes to the output in this test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209553 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209547 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r209358: PR19799: Indvars miscompile due to an
incorrect max backedge taken count from SCEV.
That fix was incomplete as pointed out by Arnold and Michael Z. The
code was also too confusing. It needed a careful rewrite with more
unit tests. This version will also happen to optimize more cases.
<rdar://17005101> PR19799: Indvars miscompile...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209545 91177308-0d34-0410-b5e6-96231b3b80d8
This matches both what we do for the non-thread case and what gcc does.
With this patch clang would match gcc's behaviour in
static __thread int a = 42;
extern __thread int b __attribute__((alias("a")));
int *f(void) { return &a; }
int *g(void) { return &b; }
if not for pr19843. Manually writing the IL does produce the same access modes.
It is also a step in the direction of fixing pr19844.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209543 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed a TODO in r207783.
Add the extracted constant offset using GEP instead of ugly
ptrtoint+add+inttoptr. Using GEP simplifies future optimizations and makes IR
easier to understand.
Updated all affected tests, and added a new test in split-gep.ll to cover a
corner case where emitting uglygep is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209537 91177308-0d34-0410-b5e6-96231b3b80d8
We do all of our address arithmetic in 64-bit, and operations involving
logically negative 32-bit offsets (actually represented as unsigned 64 bit ints)
often overflow into higher bits. The overflow check could be preserved by
casting to uint32 at the callsite for applyRelocationValue, but this would
eliminate the value of the check.
The right way to handle overflow in relocations is to make relocation processing
target specific, and compute the values for RelocationEntry objects in the
appropriate types (32-bit for 32-bit targets, 64-bit for 64-bit targets). This
is coming as part of the cleanup I'm working on.
This fixes another i386 regression test.
<rdar://problem/16889891>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209536 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add a second fixup table to MipsAsmBackend::getFixupKindInfo() to correctly
position llvm-mc's fixup placeholders for big-endian.
See PR19836 for full details of the issue. To summarize, the fixup placeholders
do not account for endianness properly and the implementations of
getFixupKindInfo() for each target are measuring MCFixupKindInfo.TargetOffset
from different ends of the instruction encoding to compensate.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209514 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209512 91177308-0d34-0410-b5e6-96231b3b80d8
to have only some of the loop's memory instructions be annotated and still _help_
the loop carried dependence analysis.
This was discussed in the llvmdev ML (topic: "parallel loop metadata question").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209507 91177308-0d34-0410-b5e6-96231b3b80d8
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:
Bit-set values:
EF_MIPS_NOREORDER = 0x00000001
EF_MIPS_PIC = 0x00000002
EF_MIPS_CPIC = 0x00000004
EF_MIPS_ABI2 = 0x00000020
Enumeration:
EF_MIPS_ARCH_32 = 0x50000000
EF_MIPS_ARCH_64 = 0x60000000
EF_MIPS_ARCH_32R2 = 0x70000000
EF_MIPS_ARCH_64R2 = 0x80000000
For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.
Patch reviewed by Nick Kledzik and Sean Silva.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209504 91177308-0d34-0410-b5e6-96231b3b80d8
It's not really a "ScopeDIE", as such - it's the abstract function
definition's DIE. And we usually use "SP" for subprograms, rather than
"Sub".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209499 91177308-0d34-0410-b5e6-96231b3b80d8
Rafael correctly pointed out that the restriction is unnecessary. Although the
tests are intended to ensure that we dont abort due to an assertion, running the
tests in all modes is better since it also ensures that we dont crash without
assertions. Always run these tests to ensure that we can handle invalid input
correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209496 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution::isKnownPredicate() can wrongly reduce a comparison
when both the LHS and RHS are SCEVAddRecExprs. This checks that both
LHS and RHS are guarded in the case when both are SCEVAddRecExprs.
The test case is against indvars because I could not find a way to
directly test SCEV.
Patch by Sanjay Patel!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209487 91177308-0d34-0410-b5e6-96231b3b80d8
Windows can't handle paths longer than 260 code points without \\?\. Even
with \\?\ it can't handle path components longer than 255 code points. So
limit graph names to the arbitrary length of 140. Random characters are still
added to the end, so it's ok if graph names collide.
Differential Revision: http://reviews.llvm.org/D3883
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209483 91177308-0d34-0410-b5e6-96231b3b80d8
i386.
This fixes two more MCJIT regression tests on i386:
ExecutionEngine/MCJIT/2003-05-06-LivenessClobber.ll
ExecutionEngine/MCJIT/2013-04-04-RelocAddend.ll
The implementation of processScatteredVANILLA is tasteless (*ba-dum-ching*),
but I'm working on a substantial tidy-up of RuntimeDyldMachO that should
improve things.
This patch also fixes a type-o in RuntimeDyldMachO::processSECTDIFFRelocation,
and teaches that method to skip over the PAIR reloc following the SECTDIFF.
<rdar://problem/16961886>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209478 91177308-0d34-0410-b5e6-96231b3b80d8
Use 4 since that's probably what it will be for spir.
Move ADDRESS_NONE to the end to keep the constant_buffer_* values
unchanged, since apparently a bunch of r600 tests use those directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209463 91177308-0d34-0410-b5e6-96231b3b80d8
This allows existing DAG combines to work on them, and then
we can re-match to BFE if necessary during instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209462 91177308-0d34-0410-b5e6-96231b3b80d8