Print in decimal for inline immediates, and hex otherwise. Use hex
always for offsets in addressing offsets.
This approximately matches what the shader compiler does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206335 91177308-0d34-0410-b5e6-96231b3b80d8
a default argument. The allocator interface we're modeling doesn't
distinguish between array and non-array allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206327 91177308-0d34-0410-b5e6-96231b3b80d8
because there is another (size_t, size_t) overload of Allocator, and the
only distinguishing factor is that one is a tempalte and the other
isn't. There was only one usage of this and that one was easily
converted to carry the alignment constraint in the type itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206325 91177308-0d34-0410-b5e6-96231b3b80d8
handles Intrinsic::trap if TargetOptions::TrapFuncName is set.
This fixes a bug in which the trap function was not taken into consideration
when a program was compiled without optimization (at -O0).
<rdar://problem/16291933>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206323 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to efficiently lower logical and
arithmetic packed shifts on both SSE and AVX/AVX2 machines.
When possible, instead of scalarizing a vector shift, the backend should try
to expand the shift into a sequence of two packed shifts by immedate count
followed by a MOVSS/MOVSD.
Example
(v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
Can be rewritten as:
(v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
[with X and Y ConstantInt]
The advantage is that the two new shifts from the example would be lowered into
X86ISD::VSRLI nodes. This is always cheaper than scalarizing the vector into
four scalar shifts plus four pairs of vector insert/extract.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206316 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to r202051, add missing loop simplification passes to the LTO
optimization pipeline.
Patch by Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206306 91177308-0d34-0410-b5e6-96231b3b80d8
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.
- Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
DebugInfoVerifier. Uses -verify-di command-line flag.
- Change verifyModule() to invoke DebugInfoVerifier as well as
Verifier.
- Add a call to createDebugInfoVerifierPass() wherever there was a
call to createVerifierPass().
This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.
<rdar://problem/15500563>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206300 91177308-0d34-0410-b5e6-96231b3b80d8
Split out assertion and output helpers from Verifier in preparation for
writing the DebugInfoVerifier.
<rdar://problem/15500563>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206299 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes we need emit the bits that would actually be a MOVN when producing a
relocated MOVZ instruction (don't ask). But not always, a check which ARM64 got
wrong until now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206289 91177308-0d34-0410-b5e6-96231b3b80d8
I've left the MachO CodeGen as it is, there's a reasonable chance it should use
the GOT like ConstPools, but I'm not certain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206288 91177308-0d34-0410-b5e6-96231b3b80d8
This brings it into line with the AArch64 behaviour and should open the way for
certain OpenCL features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206286 91177308-0d34-0410-b5e6-96231b3b80d8
Code is mostly copied directly across, with a slight extension of the
ISelDAGToDAG function so that it can cope with the floating-point constants
being behind a litpool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206285 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206283 91177308-0d34-0410-b5e6-96231b3b80d8
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206267 91177308-0d34-0410-b5e6-96231b3b80d8
allocation libraries, may allow more efficient allocation and
deallocation. It at least makes the interface implementable by the JIT
memory manager.
However, this highlights problematic overloading between the void* and
the T* deallocation functions. I'm looking into a better way to do this,
but as it happens, it comes up rarely in the codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206265 91177308-0d34-0410-b5e6-96231b3b80d8
overloads. This doesn't matter *that* much yet, but it will in
a subsequent patch. I had tested the original pattern, but not my
attempt to pacify MSVC. This at least appears to work. Still fixing the
rest of the fallout in the final patch that uses these overloads, but it
will follow shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206259 91177308-0d34-0410-b5e6-96231b3b80d8
'sizeof(T)' for T == void and produces a hard error. I cannot fathom why
this is OK. Oh well. switch to an explicit test for being the
(potentially qualified) void type, which is the only specific case I was
worried about. Hopefully this survives the libstdc++ build bots which
have limited type traits implementations...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206256 91177308-0d34-0410-b5e6-96231b3b80d8
to types which we can compute the size of. The comparison with zero
isn't actually interesting here, it's mostly about putting sizeof into
a sfinae context.
This is particular important for Deallocate as otherwise the void*
overload can quickly become ambiguous.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206251 91177308-0d34-0410-b5e6-96231b3b80d8