The motivation for this patch starts with the epic fail example in PR18007:
https://llvm.org/bugs/show_bug.cgi?id=18007
...unfortunately, this patch makes no difference for that case, but it solves some
simpler cases. We'll get there some day. :)
The current 'or' matching code was using computeKnownBits() via
isBaseWithConstantOffset() -> MaskedValueIsZero(), but that's an unnecessarily limited use.
We can do more by copying the logic in ValueTracking's haveNoCommonBitsSet(), so we can
treat the 'or' as if it was an 'add'.
There's a TODO comment here because we should lift the bit-checking logic into a helper
function, so it's not duplicated in DAGCombiner.
An example of the better LEA matching:
leal (%rdi,%rdi), %eax
andl $1, %esi
orl %esi, %eax
Becomes:
andl $1, %esi
leal (%rsi,%rdi,2), %eax
Differential Revision: http://reviews.llvm.org/D13956
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252515 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252512 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This matches the sum-of-absdiff patterns emitted by the vectoriser using log2 shuffles.
Relies on D14207 to be able to match the `extract_subvector(..., 0)`
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252465 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Lowering this pattern early to an `EXTRACT_SUBREG` was making it impossible to match larger patterns in tblgen that use `extract_subvector(..., 0)` as part of the their input pattern.
It seems like there will exist somewhere a better way of specifying this pattern over all relevant register value types, but I didn't manage to find it.
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14207
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252464 91177308-0d34-0410-b5e6-96231b3b80d8
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252462 91177308-0d34-0410-b5e6-96231b3b80d8
Under most circumstances, if SCEV can simplify X-Y to a constant, then it can
also simplify Y-X to a constant. However, there is no guarantee that this is
always true, and concensus is not to consider that a correctness bug in SCEV
(although it is undesirable).
PPCLoopPreIncPrep gathers pointers used to access memory (via loads, stores and
prefetches) into buckets, where in each bucket the relative pointer offsets are
constant. We used to keep each bucket as a multimap, where SCEV's subtraction
operation was used to define the ordering predicate. Instead, use a fixed SCEV
base expression for each bucket, record the constant offsets from that base
expression, and adjust it later, if desirable, once all pointers have been
collected.
Doing it this way should be more compile-time efficient than the previous
scheme (in addition to making the implementation less sensitive to SCEV
simplification quirks).
Fixes PR25170.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252417 91177308-0d34-0410-b5e6-96231b3b80d8
The TailDuplication machine pass ran across a malformed CFG: a PHI node
referred it's predecessor's predecessor instead of it's predecessor.
This occurred because we split the edge in X86ISelLowering when we
processed the CATCHRET but forgot to do something about the PHI nodes.
This fixes PR25444.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252413 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252383 91177308-0d34-0410-b5e6-96231b3b80d8
Some implicit ilist iterator conversions have crept back into Analysis,
Transforms, Hexagon, and llvm-stress. This removes them.
I'll commit a patch immediately after this to disallow them (in a
separate patch so that it's easy to revert if necessary).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252371 91177308-0d34-0410-b5e6-96231b3b80d8
We used to try to constant-fold them to i32 immediates.
Given that fast-isel doesn't otherwise support vNi1, when selecting
the result users, we'd fallback to SDAG anyway.
However, if the users were in another block, we'd insert broken
cross-class copies (GPR32 to FPR64).
Give up, let SDAG agree with itself on a vNi1 legalization strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252364 91177308-0d34-0410-b5e6-96231b3b80d8
When matching non-LSB-extracting truncating broadcasts, we now insert
the necessary SRL. If the scalar resulted from a load, the SRL will be
folded into it, creating a narrower, offset, load.
However, i16 loads aren't Desirable, so we get i16->i32 zextloads.
We already catch i16 aextloads; catch these as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252363 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we recognize this, we can support it instead of bailing out.
That is, we can fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc (srl Y, 16)))))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252362 91177308-0d34-0410-b5e6-96231b3b80d8
We used to incorrectly assume that the offset we're extracting from
was a multiple of the element size. So, we'd fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc Y))))
whereas we should have extracted the higher bits from X.
Instead, bail out if the assumption doesn't hold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252361 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Pass the VOPProfile object all the through to *_m multiclasses. This will
allow us to do more simplifications in the future.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D13437
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252339 91177308-0d34-0410-b5e6-96231b3b80d8
Mark kernels that use certain features that require user
SGPRs to support with kernel attributes. We need to know
before instruction selection begins because it impacts
the kernel calling convention lowering.
For now this only detects the workitem intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252323 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason VS_32 ends up factoring into the pressure heuristics
even though we should never see a virtual register with this class.
When SGPRs are reserved for register spilling, this for some reason
triggers reg-crit scheduling.
Setting isAllocatable = 0 may help with this since that seems to remove
it from the default implementation's generated table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252321 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252318 91177308-0d34-0410-b5e6-96231b3b80d8
The benefit from converting narrow loads into a wider load (r251438) could be
micro-architecturally dependent, as it assumes that a single load with two bitfield
extracts is cheaper than two narrow loads. Currently, this conversion is
enabled only in cortex-a57 on which performance benefits were verified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252316 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The bug was that the sldi instructions have immediate widths dependant on
their element size. So sldi.d has a 1-bit immediate and sldi.b has a 4-bit
immediate. All of these were using 4-bit immediates previously.
Reviewers: vkalintiris
Subscribers: llvm-commits, atanasyan, dsanders
Differential Revision: http://reviews.llvm.org/D14018
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252297 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The bug was that the MIPS32R6/MIPS64R6/microMIPS32R6 versions of LSA and DLSA
(unlike the MSA version) failed to account for the off-by-one encoding of the
immediate. The range is actually 1..4 rather than 0..3.
Reviewers: vkalintiris
Subscribers: atanasyan, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14015
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252295 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Without these patterns we would generate a complete LL/SC sequence.
This would be problematic for memory regions marked as WRITE-only or
READ-only, as the instructions LL/SC would read/write to the protected
memory regions correspondingly.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14397
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252293 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the EH_RESTORE x86 pseudo instr, which is responsible for
restoring the stack pointers: EBP and ESP, and ESI if stack realignment
is involved. We only need this on 32-bit x86, because on x64 the runtime
restores CSRs for us.
Previously we had to keep the CATCHRET instruction around during SEH so
that we could convince X86FrameLowering to restore our frame pointers.
Now we can split these instructions earlier.
This was confusing, because we had a return instruction which wasn't
really a return and was ultimately going to be removed by
X86FrameLowering. This change also simplifies X86FrameLowering, which
really shouldn't be building new MBBs.
No observable functional change currently, but with the new register
mask stuff in D14407, CATCHRET will become a register allocator barrier,
and our existing tests rely on us having reasonable register allocation
around SEH.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252266 91177308-0d34-0410-b5e6-96231b3b80d8
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252210 91177308-0d34-0410-b5e6-96231b3b80d8