Also added the testcase that should have been in r215194.
This behaviour has surprised me a few times now. The problem is that the
generated MipsSubtarget::ParseSubtargetFeatures() contains code like this:
if ((Bits & Mips::FeatureABICalls) != 0) IsABICalls = true;
so '-abicalls' means 'leave it at the default' and '+abicalls' means 'set it to
true'. In this case, (and the similar -modd-spreg case) I'd like the code to be
IsABICalls = (Bits & Mips::FeatureABICalls) != 0;
or possibly:
if ((Bits & Mips::FeatureABICalls) != 0)
IsABICalls = true;
else
IsABICalls = false;
and preferably arrange for 'Bits & Mips::FeatureABICalls' to be true by default
(on some triples).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215211 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
a) Move the replacement level decision to the target machine.
b) Create additional subtargets at the TargetMachine level to
cache and make replacement easy.
c) Make the mips16 features obvious.
d) Remove the override logic as it no longer does anything.
e) Have MipsModuleDAGToDAGISel take only the target machine.
f) Have the constant islands pass grab the current subtarget
from the MachineFunction (via the TargetMachine) instead
of caching it.
g) Unconditionally initialize TLOF.
h) Remove the old complicated subtarget based resetting and
replace it with simple conditionals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213430 91177308-0d34-0410-b5e6-96231b3b80d8
two reasons:
a) we're already caching the target machine which contains it,
b) which relocation model you get is dependent upon whether or
not you ask before MCCodeGenInfo is constructed on the target
machine, so avoid any latent issues there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213420 91177308-0d34-0410-b5e6-96231b3b80d8
Options struct and move the comment to inMips16HardFloat. Use the
fact that we now know whether or not we cared about soft float to
set the libcalls.
Accordingly rename mipsSEUsesSoftFloat to abiUsesSoftFloat and
propagate since it's no longer CPU specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213335 91177308-0d34-0410-b5e6-96231b3b80d8
Refactoring; no functional changes intended
Removed PostRAScheduler bits from subtargets (X86, ARM).
Added PostRAScheduler bit to MCSchedModel class.
This bit is set by a CPU's scheduling model (if it exists).
Removed enablePostRAScheduler() function from TargetSubtargetInfo and subclasses.
Fixed the existing enablePostMachineScheduler() method to use the MCSchedModel (was just returning false!).
Added methods to TargetSubtargetInfo to allow overrides for AntiDepBreakMode, CriticalPathRCs, and OptLevel for PostRAScheduling.
Added enablePostRAScheduler() function to PostRAScheduler class which queries the subtarget for the above values.
Preserved existing scheduler behavior for ARM, MIPS, PPC, and X86:
a. ARM overrides the CPU's postRA settings by enabling postRA for any non-Thumb or Thumb2 subtarget.
b. MIPS overrides the CPU's postRA settings by enabling postRA for everything.
c. PPC overrides the CPU's postRA settings by enabling postRA for everything.
d. X86 is the only target that actually has postRA specified via sched model info.
Differential Revision: http://reviews.llvm.org/D4217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213101 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is because the FP64A the hardware will redirect 32-bit reads/writes
from/to odd-numbered registers to the upper 32-bits of the corresponding
even register. In effect, simulating FR=0 mode when FR=0 mode is not
available.
Unfortunately, we have to make the decision to avoid mfc1/mtc1 before
register allocation so we currently do this for even registers too.
FPXX has a similar requirement on 32-bit architectures that lack
mfhc1/mthc1 so this patch also handles the affected moves from the FPU for
FPXX too. Moves to the FPU were supported by an earlier commit.
Differential Revision: http://reviews.llvm.org/D4484
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212938 91177308-0d34-0410-b5e6-96231b3b80d8
enabled and mthc1 and dmtc1 are not available (e.g. on MIPS32r1)
This prevents the upper 32-bits of a double precision value from being moved to
the FPU with mtc1 to an odd-numbered FPU register. This is necessary to ensure
that the code generated executes correctly regardless of the current FPU mode.
MIPS32r2 and above continues to use mtc1/mthc1, while MIPS-IV and above continue
to use dmtc1.
Differential Revision: http://reviews.llvm.org/D4465
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When -mno-odd-spreg is in effect, 32-bit floating point values are not
permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit
floating point comparison results from being written to odd registers.
This option has three purposes:
* It allows support for certain MIPS implementations such as loongson-3a that
do not allow the use of odd registers for single precision arithmetic.
* When using -mfpxx, -mno-odd-spreg is the default and this allows us to
statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1
instructions to/from odd registers are guaranteed not to appear for any
reason. Once this has been established, the user can then re-enable
-modd-spreg to regain the use of all 32 single-precision registers.
* When using -mfp64 and -mno-odd-spreg together, an O32 extension named
O32 FP64A is used as the ABI. This is intended to provide almost all
functionality of an FR=1 processor but can also be executed on a FR=0 core
with the assistance of a hardware compatibility mode which emulates FR=0
behaviour on an FR=1 processor.
* Added '.module oddspreg' and '.module nooddspreg' each of which update
the .MIPS.abiflags section appropriately
* Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller
doesn't have to remember to do it.
* MipsABIFlags now calculates the flags1 and flags2 member on demand rather
than trying to maintain them in the same format they will be emitted in.
There is one portion of the -mfp64 and -mno-odd-spreg combination that is not
implemented yet. Moves to/from odd-numbered double-precision registers must not
use mtc1. I will fix this in a follow-up.
Differential Revision: http://reviews.llvm.org/D4383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212717 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-3 that was available in MIPS32R2.
To limit the number of tests required, only one 32-bit and one 64-bit ISA
prior to MIPS32/MIPS64 are tested.
rdhwr has been deliberately left without an ISA annotation for now. This is
because the assembler and CodeGen disagree on when the instruction is
available. Strictly speaking, it is only available in MIPS32r2 and
MIPS64r2. However, it is emulated by a kernel trap on earlier ISA's and is
necessary for TLS so CodeGen should emit it on older ISA's too.
Depends on D3696
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3697
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208690 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-V that was available in MIPS32R2
Most of these instructions are correctly rejected but with the wrong error
message. These have been placed in a separate test for now. It happens
because many of the MIPS V instructions have not been implemented.
Depends on D3694
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3695
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208546 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
DCL[ZO] are now correctly marked as being MIPS64 instructions. This has no
effect on the CodeGen tests since expansion of i64 prevented their use
anyway.
The check for MIPS16 to prevent the use of CLZ no longer prevents DCLZ as
well. This is not a functional change since DCLZ is still prohibited by
being a MIPS64 instruction (MIPS16 is only compatible with MIPS32).
No functional change
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3694
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208544 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
dsbh and dshd are not available on Mips32r2. No codegen test changes
required since expansion of i64 prevented the use of these instructions
anyway.
Depends on D3690
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3692
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208542 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
No functional change.
The minor change to the MIPS16 code is in preparation for a patch that will handle 32-bit FPIdx instructions separately to 64-bit (because they were added in different revisions)
Depends on D3677
Reviewers: rkotler, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208541 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-IV that was available in MIPS32
A small number of instructions are correctly rejected but with the wrong error
message. These have been placed in a separate test for now.
Depends on D3676
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208414 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-III that was available in MIPS32
A small number of instructions are correctly rejected but with the wrong error
message. These have been placed in a separate test for now.
There's some obvious InstAlias's that ought to be marked MIPS-III but arent.
This is because they are not currently tested. I intend to catch these with
a final pass through the tablegen records to find tablegen records without
ISA annotations.
Depends on D3674
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3675
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208408 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Adds MIPS32r6/MIPS64r6 and checks the compatibility requirements for these
processors.
I've also included comments to describe removed and re-encoded instructions,
along with placeholder def's for the new instructions but there are no
functional changes to codegen at this point.
Reviewers: jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3622
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208399 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These processors will only be available for the integrated assembler at
first (CodeGen will emit a fatal error saying they are not implemented).
The intention is to work through the existing instructions and correctly
annotate the ISA they were added in so that we have a sufficiently good
base to start MIPS64r6 development. MIPS64r6 removes/re-encodes certain
instructions and I believe it is best to define ISA's using set-union's
as far as possible rather than using set-subtraction.
Reviewers: vmedic
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D3569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208221 91177308-0d34-0410-b5e6-96231b3b80d8
system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206838 91177308-0d34-0410-b5e6-96231b3b80d8
This is so that EF_MIPS_NAN2008 is set if we are using IEEE 754-2008
NaN encoding (-mnan=2008). This patch also adds support for parsing
'.nan legacy' and '.nan 2008' assembly directives. The handling of
these directives should match GAS' behaviour i.e., the last directive
in use sets the ELF header bit (EF_MIPS_NAN2008).
Differential Revision: http://reviews.llvm.org/D3346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206396 91177308-0d34-0410-b5e6-96231b3b80d8
This should fix the ninja-x64-msvc-RA-centos6 builder.
I suspect the check in MipsSubtarget.cpp is incorrect and is really trying to
check for a bare-metal target rather and anything other than linux. I'll
investigate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206385 91177308-0d34-0410-b5e6-96231b3b80d8
The Octeon cpu from Cavium Networks is mips64r2 based and has an extended
instruction set. In order to utilize this with LLVM, a new cpu feature "octeon"
and a subtarget feature "cnmips" is added. A small set of new instructions
(baddu, dmul, pop, dpop, seq, sne) is also added. LLVM generates dmul, pop and
dpop instructions with option -mcpu=octeon or -mattr=+cnmips.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204337 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This should fix the MCJIT unit tests that were broken by r201792 on the MIPS buildbot.
MIPS currently uses the default implementation of sys::getHostCPUName() which
always returns "generic". For now, we will accept "generic" and coerce it to
"mips32" or "mips64" depending on the target architecture like we do for empty
CPU names.
Reviewers: jacksprat, matheusalmeida
Reviewed By: jacksprat
Differential Revision: http://llvm-reviews.chandlerc.com/D2878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202253 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This removes the need to coerce UnknownABI to the default ABI (O32 for
MIPS32, N64 for MIPS64 [*]) in both MipsSubtarget and MipsAsmParser.
Clang has been updated to disable both possible default ABI's before enabling
the ABI it intends to use.
[*] N64 being the default for MIPS64 is not actually correct.
However N32 is not fully implemented/tested yet.
Depends on: D2830
Reviewers: jacksprat, matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2832
Differential Revision: http://llvm-reviews.chandlerc.com/D2846
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201792 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is consistent with the integrated assembler.
All mips64 codegen tests previously passed -mcpu. Removed -mcpu from
blez_bgez.ll and const-mult.ll to cover the default case.
Ideally, the two implementations of selectMipsCPU() will be merged but it's
proven difficult to find a home for the function that doesn't cause link errors.
For now, we'll hoist the common functionality into a function and mark it with
FIXME's.
Reviewers: jacksprat, matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2830
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201782 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
conditional branches for very large targets. That will be the next small
patch. Everything now should in principle work as good (functionality
wise) as without constant islands so we decided at Mips/Imagination to
make constant islands the default for Mips16 now so that it will get
excercised a lot and this port is still experimentatl though hopefully soon
we will change the status. Some more cleanup and code review is in order
but things are converging fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195902 91177308-0d34-0410-b5e6-96231b3b80d8
Hard float for mips16 means essentially to compile as soft float but to
use a runtime library for soft float that is written with native mips32
floating point instructions (those runtime routines run in mips32 hard
float mode).
The patch reviewed by Reed Kotler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195123 91177308-0d34-0410-b5e6-96231b3b80d8
Before I just ported the shell of the pass. I've tried to keep everything
nearly identical to the ARM version. I think it will be very easy to eventually
merge these two and create a new more general pass that other targets can
use. I have some improvements I would like to make to allow pools to
be shared across functions and some other things. When I'm all done we
can think about making a more general pass. More to be ported but the
basic mechanism works now almost as good as gcc mips16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193509 91177308-0d34-0410-b5e6-96231b3b80d8
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189690 91177308-0d34-0410-b5e6-96231b3b80d8
This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188586 91177308-0d34-0410-b5e6-96231b3b80d8