The new analysis is not yet ready for prime time. It has a *critical*
flawed assumption, and some troubling shortages of testing. Until it's
been hammered into better shape, let's stick with the working code. This
should be easy to revert itself when the analysis is ready.
Fixes PR14241, a miscompile of any memcpy-able loop which uses a pointer
as the induction mechanism. If you have been seeing miscompiles in this
revision range, you really want to test with this backed out. The
results of this miscompile are a bit subtle as they can lead to
downstream passes concluding things are impossible which are in fact
possible.
Thanks to David Blaikie for the majority of the reduction of this
miscompile. I'll be checking in the test case in a non-revert commit.
Revesions reverted here:
r167045: LoopIdiom: Fix a serious missed optimization: we only turned
top-level loops into memmove.
r166877: LoopIdiom: Add checks to avoid turning memmove into an infinite
loop.
r166875: LoopIdiom: Recognize memmove loops.
r166874: LoopIdiom: Replace custom dependence analysis with
DependenceAnalysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167286 91177308-0d34-0410-b5e6-96231b3b80d8
When target cost information is available, compute explicit costs of inserting and
extracting values from vectors. At this point, all costs are estimated using the
target information, and the chain-depth heuristic is not needed. As a result, it is now, by
default, disabled when using target costs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167256 91177308-0d34-0410-b5e6-96231b3b80d8
run through the 'C' preprocessor. That is pick up the file name
and line numbers from the cpp hash file line comments for the
dwarf file and line numbers tables.
rdar://9275556
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167237 91177308-0d34-0410-b5e6-96231b3b80d8
Unsupported CPU type!
UNREACHABLE executed at llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp:553!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167231 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
The adc/sbb optimization is to able to convert following expression
into a single adc/sbb instruction:
(ult) ... = x + 1 // where the ult is unsigned-less-than comparison
(ult) ... = x - 1
This change is to flip the "x >u y" (i.e. ugt comparison) in order
to expose the adc/sbb opportunity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167180 91177308-0d34-0410-b5e6-96231b3b80d8
BBVectorize would, except for loads and stores, always fuse instructions
so that the first instruction (in the current source order) would always
represent the low part of the input vectors and the second instruction
would always represent the high part. This lead to too many shuffles
being produced because sometimes the opposite order produces fewer of them.
With this change, BBVectorize tracks the kind of pair connections that form
the DAG of candidate pairs, and uses that information to reorder the pairs to
avoid excess shuffles. Using this information, a future commit will be able
to add VTTI-based shuffle costs to the pair selection procedure. Importantly,
the number of remaining shuffles can now be estimated during pair selection.
There are some trivial instruction reorderings in the test cases, and one
simple additional test where we certainly want to do a reordering to
avoid an unnecessary shuffle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167122 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strto* optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167119 91177308-0d34-0410-b5e6-96231b3b80d8
By propagating the value for the switch condition, LLVM can now build
lookup tables for code such as:
switch (x) {
case 1: return 5;
case 2: return 42;
case 3: case 4: case 5:
return x - 123;
default:
return 123;
}
Given that x is known for each case, "x - 123" becomes a constant for
cases 3, 4, and 5.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167115 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strpbrk optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167105 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strlen optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167103 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strncpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167102 91177308-0d34-0410-b5e6-96231b3b80d8
parameters. Examples of these are:
struct { } a;
union { } b[256];
int a[0];
An empty aggregate has an address, although dereferencing that address is
pointless. When passed as a parameter, an empty aggregate does not consume
a protocol register, nor does it consume a doubleword in the parameter save
area. Passing an empty aggregate by reference passes an address just as
for any other aggregate. Returning an empty aggregate uses GPR3 as a hidden
address of the return value location, just as for any other aggregate.
The patch modifies PPCTargetLowering::LowerFormalArguments_64SVR4 and
PPCTargetLowering::LowerCall_64SVR4 to properly skip empty aggregate
parameters passed by value. The handling of return values and by-reference
parameters was already correct.
Built on powerpc64-unknown-linux-gnu and tested with no new regressions.
A test case is included to test proper handling of empty aggregate
parameters on both sides of the function call protocol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167090 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for loops in the LAPACK test-suite.
These loops start at 1 because they are auto-converted from fortran.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167084 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the stpcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier. Note that the
__stpcpy_chk simplifications were migrated in a previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167083 91177308-0d34-0410-b5e6-96231b3b80d8
r166198 migrated the strcpy optimization to instcombine. The strcpy
simplifier that was migrated from Transforms/Scalar/SimplifyLibCalls.cpp
was also doing some __strcpy_chk simplifications. Those fortified
simplifications were migrated as well, but introduced a bug in the
__stpcpy_chk simplifier in the process. This happened because the
__strcpy_chk and __stpcpy_chk simplifiers were both mapped to StrCpyChkOpt
which was updated with simplifications that worked for __strcpy_chk, but
not __stpcpy_chk.
This patch fixes the problem by adding proper test coverage and creating a
new simplifier for __stpcpy_chk (instead of sharing one with __strcpy_chk).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167082 91177308-0d34-0410-b5e6-96231b3b80d8
the first source operand is tied to the destination operand.
This is to accurately model the corresponding instructions where the upper
bits are unmodified.
rdar://12558838
PR14221
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167064 91177308-0d34-0410-b5e6-96231b3b80d8
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167051 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds more support for vector type comparisons using altivec.
It adds correct support for v16i8, v8i16, v4i32, and v4f32 vector
types for comparison operators ==, !=, >, >=, <, and <=.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167015 91177308-0d34-0410-b5e6-96231b3b80d8
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167011 91177308-0d34-0410-b5e6-96231b3b80d8
getCastInstrCost had an assert prohibiting scalar to vector casts. Such casts,
however, are allowed. This should make the vectorizer buildbot happier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166998 91177308-0d34-0410-b5e6-96231b3b80d8
When the operand is a plain immediate rather than a label, print it
as [pc, #imm] like we do for the Thumb2 wide encoding variant.
rdar://12154503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166991 91177308-0d34-0410-b5e6-96231b3b80d8
We will make them delay slot forms if there is something that can be
placed in the delay slot during a separate pass. Mips16 extended instructions
cannot be placed in delay slots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166990 91177308-0d34-0410-b5e6-96231b3b80d8
is 24 bits not 20 and the decoding needed to correctly handle converting the
J1 and J2 bits to their I1 and I2 values to reconstruct the displacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166982 91177308-0d34-0410-b5e6-96231b3b80d8
ELF ABI.
A varargs parameter consisting of a single-precision floating-point value,
or of a single-element aggregate containing a single-precision floating-point
value, must be passed in the low-order (rightmost) four bytes of the
doubleword stack slot reserved for that parameter. If there are GPR protocol
registers remaining, the parameter must also be mirrored in the low-order
four bytes of the reserved GPR.
Prior to this patch, such parameters were being passed in the high-order
four bytes of the stack slot and the mirrored GPR.
The patch adds a new test case to verify the correct code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166968 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
Partial copies can show up even when CoalescerPair.isPartial() returns
false. For example:
%vreg24:dsub_0<def> = COPY %vreg31:dsub_0; QPR:%vreg24,%vreg31
Such a partial-partial copy is not good enough for the transformation
adjustCopiesBackFrom() needs to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166944 91177308-0d34-0410-b5e6-96231b3b80d8
incorrect instruction sequence due to it not being aware that an
inline assembly instruction may reference memory.
This patch fixes the problem by causing the scheduler to always assume that any
inline assembly code instruction could access memory. This is necessary because
the internal representation of the inline instruction does not include
any information about memory accesses.
This should fix PR13504.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166929 91177308-0d34-0410-b5e6-96231b3b80d8
ELF subtarget.
The existing logic is used as a fallback to avoid any changes to the Darwin
ABI. PPC64 ELF now has two possible data layout strings: one for FreeBSD,
which requires 8-byte alignment, and a default string that requires
16-byte alignment.
I've added a test for PPC64 Linux to verify the 16-byte alignment. If
somebody wants to add a separate test for FreeBSD, that would be great.
Note that there is a companion patch to update the alignment information
in Clang, which I am committing now as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166928 91177308-0d34-0410-b5e6-96231b3b80d8
split module can see each other. If it is keeping a symbol that already has
a non local linkage, it doesn't need to change it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166908 91177308-0d34-0410-b5e6-96231b3b80d8
output of both
llvm-extract foo.ll -func=bar
and
llvm-extract foo.ll -func=bar -delete
so the two new files could not be linked together anymore. With this change
alias are handled almost like functions and global variables. Almost because
with alias we cannot just clear the initializer/body, we have to create a new
declaration and replace the alias with it.
The net result is that now the output of the above commands can be linked
even if foo.ll has aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166907 91177308-0d34-0410-b5e6-96231b3b80d8
Previously mips16 was sharing the pattern addr which is used for mips32
and mips64. This had a number of problems:
1) Storing and loading byte and halfword quantities for mips16 has particular
problems due to the primarily non mips16 nature of SP. When we must
load/store byte/halfword stack objects in a function, we must create a mips16
alias register for SP. This functionality is tested in stchar.ll.
2) We need to have an FP register under certain conditions (such as
dynamically sized alloca). We use mips16 register S0 for this purpose.
In this case, we also use this register when accessing frame objects so this
issue also affects the complex pattern addr16. This functionality is
tested in alloca16.ll.
The Mips16InstrInfo.td has been updated to use addr16 instead of addr.
The complex pattern C++ function for addr has been copied to addr16 and
updated to reflect the above issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166897 91177308-0d34-0410-b5e6-96231b3b80d8
This turns loops like
for (unsigned i = 0; i != n; ++i)
p[i] = p[i+1];
into memmove, which has a highly optimized implementation in most libcs.
This was really easy with the new DependenceAnalysis :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166875 91177308-0d34-0410-b5e6-96231b3b80d8
Requires a lot less code and complexity on loop-idiom's side and the more
precise analysis can catch more cases, like the one I included as a test case.
This also fixes the edge-case miscompilation from PR9481.
Compile time performance seems to be slightly worse, but this is mostly due
to an extra LCSSA run scheduled by the PassManager and should be fixed there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166874 91177308-0d34-0410-b5e6-96231b3b80d8
Add getCostXXX calls for different families of opcodes, such as casts, arithmetic, cmp, etc.
Port the LoopVectorizer to the new API.
The LoopVectorizer now finds instructions which will remain uniform after vectorization. It uses this information when calculating the cost of these instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166836 91177308-0d34-0410-b5e6-96231b3b80d8
Keep the integer_insertelement test case, the new coalescer can handle
this kind of lane insertion without help from pseudo-instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166835 91177308-0d34-0410-b5e6-96231b3b80d8
Some instructions in ARM require 2 even-odd paired GPRs. This
patch adds support for such register class.
Patch by Weiming Zhao!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166816 91177308-0d34-0410-b5e6-96231b3b80d8
It was unmaintained and not much more than a stub. The new DependenceAnalysis
pass is both more general and complete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166810 91177308-0d34-0410-b5e6-96231b3b80d8
list of externals. This makes sense since a shared library with no symbols
can still be useful if it has static constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166795 91177308-0d34-0410-b5e6-96231b3b80d8
The LoopSimplify bug is pretty harmless because the loop goes from unanalyzable
to analyzable but the LCSSA bug is very nasty. It only comes into play with a
specific order of the LoopPassManager worklist and can cause actual
miscompilations, when a SCEV refers to a value that has been replaced with PHI
node. SCEVExpander may then insert code into the wrong place, either violating
domination or randomly miscompiling stuff.
Comes with an extensive test case reduced from the test-suite with
bugpoint+SCEVValidator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166787 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first of several steps to incorporate information from the new
TargetTransformInfo infrastructure into BBVectorize. Two things are done here:
1. Target information is used to determine if it is profitable to fuse two
instructions. This means that the cost of the vector operation must not
be more expensive than the cost of the two original operations. Pairs that
are not profitable are no longer considered (because current cost information
is incomplete, for intrinsics for example, equal-cost pairs are still
considered).
2. The 'cost savings' computed for the profitability check are also used to
rank the DAGs that represent the potential vectorization plans. Specifically,
for nodes of non-trivial depth, the cost savings is used as the node
weight.
The next step will be to incorporate the shuffle costs into the DAG weighting;
this will give the edges of the DAG weights as well. Once that is done, when
target information is available, we should be able to dispense with the
depth heuristic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166716 91177308-0d34-0410-b5e6-96231b3b80d8
The isValueEqualityComparison() guard at the top of SimplifySwitch()
only applies to some of the possible transformations.
The newer transformations work just fine on large switches, and the
check on predecessor count is nonsensical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166710 91177308-0d34-0410-b5e6-96231b3b80d8
structs having size 3, 5, 6, or 7. Such a struct must be passed and received
as right-justified within its register or memory slot. The problem is only
present for structs that are passed in registers.
Previously, as part of a patch handling all structs of size less than 8, I
added logic to rotate the incoming register so that the struct was left-
justified prior to storing the whole register. This was incorrect because
the address of the parameter had already been adjusted earlier to point to
the right-adjusted value in the storage slot. Essentially I had accidentally
accounted for the right-adjustment twice.
In this patch, I removed the incorrect logic and reorganized the code to make
the flow clearer.
The removal of the rotates changes the expected code generation, so test case
structsinregs.ll has been modified to reflect this. I also added a new test
case, jaggedstructs.ll, to demonstrate that structs of these sizes can now
be properly received and passed.
I've built and tested the code on powerpc64-unknown-linux-gnu with no new
regressions. I also ran the GCC compatibility test suite and verified that
earlier problems with these structs are now resolved, with no new regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166680 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds initial PPC64 TOC MC object creation using the small mcmodel
(a single 64K TOC) adding the some TOC relocations (R_PPC64_TOC,
R_PPC64_TOC16, and R_PPC64_TOC16DS).
The addition of 'undefinedExplicitRelSym' hook on 'MCELFObjectTargetWriter'
is meant to avoid the creation of an unreferenced ".TOC." symbol (used in
the .odp creation) as well to set the R_PPC64_TOC relocation target as the
temporary ".TOC." symbol. On PPC64 ABI, the R_PPC64_TOC relocation should
not point to any symbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166677 91177308-0d34-0410-b5e6-96231b3b80d8
smaller integer loads and stores.
The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.
Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.
If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.
Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166662 91177308-0d34-0410-b5e6-96231b3b80d8
into a sbc with a positive number, the immediate should be complemented, not
negated. Also added a missing pattern for ARM codegen.
rdar://12559385
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166613 91177308-0d34-0410-b5e6-96231b3b80d8
When the trip count is -1, getSmallConstantTripMultiple could return zero,
and this would cause runtime loop unrolling to assert. Instead of returning
zero, one is now returned (consistent with the existing overflow cases).
Fixes PR14167.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166612 91177308-0d34-0410-b5e6-96231b3b80d8
- If more than 1 elemennts are defined and target supports the vectorized
conversion, use the vectorized one instead to reduce the strength on
conversion operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166546 91177308-0d34-0410-b5e6-96231b3b80d8
- As there's no 64-bit GPRs in 32-bit mode, a custom conversion from v2u32 to
v2f32 is added to improve the efficiency of the code generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166545 91177308-0d34-0410-b5e6-96231b3b80d8
the difference from "int x" (which should go in registers and
"struct y {int x;}" (which should not).
Clang will be updated in the next patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166536 91177308-0d34-0410-b5e6-96231b3b80d8
- Check index being extracted to be constant 0 before simplfiying.
Otherwise, retain the original sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166504 91177308-0d34-0410-b5e6-96231b3b80d8
loads. It's not really profitable and may result in GVN going into an infinite
loop when it hits constructs like this:
%x = gep %some.type %x, ...
Found via an LTO build of LLVM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166490 91177308-0d34-0410-b5e6-96231b3b80d8
%V = mul i64 %N, 4
%t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
into
%t1 = getelementptr i32* %arr, i32 %N
%t = bitcast i32* %t1 to i8*
incorporating the multiplication into the getelementptr.
This happens all the time in dragonegg, for example for
int foo(int *A, int N) {
return A[N];
}
because gcc turns this into byte pointer arithmetic before it hits the plugin:
D.1590_2 = (long unsigned int) N_1(D);
D.1591_3 = D.1590_2 * 4;
D.1592_5 = A_4(D) + D.1591_3;
D.1589_6 = *D.1592_5;
return D.1589_6;
The D.1592_5 line is a POINTER_PLUS_EXPR, which is turned into a getelementptr
on a bitcast of A_4 to i8*, so this becomes exactly the kind of IR that the
transform fires on.
An analogous transform (with no testcases!) already existed for bitcasts of
arrays, so I rewrote it to share code with this one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166474 91177308-0d34-0410-b5e6-96231b3b80d8
The CFG of the machine function needs to know that the targets of the indirect
branch are successors to the indirect branch.
<rdar://problem/12529625>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166448 91177308-0d34-0410-b5e6-96231b3b80d8
Per the October 12, 2012 Proposal for annotated disassembly output sent out by
Jim Grosbach this set of changes implements this for X86 and arm. The llvm-mc
tool now has a -mdis option to produced the marked up disassembly and a couple
of small example test cases have been added.
rdar://11764962
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166445 91177308-0d34-0410-b5e6-96231b3b80d8