The combination of inline asm, stack realignment, and dynamic allocas
turns out to be too common to reject out of hand.
ASan inserts empy inline asm fragments and uses aligned allocas.
Compiling any trivial function containing a dynamic alloca with ASan is
enough to trigger the check.
XFAIL the test cases that would be miscompiled and add one that uses the
relevant functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196986 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196939 91177308-0d34-0410-b5e6-96231b3b80d8
immediately after SSE scalar fp instructions like addss or mulss.
Added patterns to select SSE scalar fp arithmetic instructions from a scalar
fp operation followed by a blend.
For example, given the following code:
__m128 foo(__m128 A, __m128 B) {
A[0] += B[0];
return A;
}
previously we generated:
addss %xmm0, %xmm1
movss %xmm1, %xmm0
now we generate:
addss %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196925 91177308-0d34-0410-b5e6-96231b3b80d8
Save S2(reg 18) only when we are calling floating point stubs that
have a return value of float or complex. Some more work to make this
better but this is the first step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196921 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196906 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196905 91177308-0d34-0410-b5e6-96231b3b80d8
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196876 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to gcov, llvm-cov will now print out the block count at the end
of each block. Multiple blocks can end on the same line.
One computational difference is by using -a, llvm-cov will no longer
simply add the block counts together to form a line count. Instead, it
will take the maximum of the block counts on that line. This has a
similar effect to what gcov does, but generates more correct counts in
certain scenarios.
Also updated tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196856 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids creating branch weight metadata of length one when we fold
cases into the default of a switch instruction, which was triggering
an assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196845 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Jiangning Liu.
With some test case changes:
- intrinsic test added to the existing /test/CodeGen/AArch64/neon-aba-abd.ll.
- New test cases to cover movi 1D scenario without using the intrinsic in
test/CodeGen/AArch64/neon-mov.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196806 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The MSA ld.[bhwd] and st.[bhwd] instructions scale the immediate by the
element size before use as an offset. The offset must therefore be a
multiple of the element size to be valid in these instructions. However,
an unaligned base address is valid in MSA.
This commit causes the compiler to emit valid code when the calculated
offset is not a multiple of the element size by accounting for the offset
using addiu and using a zero offset in the load/store.
Depends on D2338
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196777 91177308-0d34-0410-b5e6-96231b3b80d8
As we can't make a complete solution now it has been decided to enable .set directive to handle long jump expressions. This will cause parser to report errors when parsing integer based register assignments, for example:
.set r3, will be reported as error. Still, the need for expressions is higher priority as the integer based register assignments are Mips specific and can be avoided using register names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196773 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to eliminate an "sub sp, sp, #N" instruction by folding
it into an existing push/pop using dummy registers, we need to account
for the fact that this might affect precisely how "fp" gets set in the
prologue.
We were attempting this, but assuming that *whenever* we performed a
fold it would make a difference. This is false, for example, in:
push {r4, r7, lr}
add fp, sp, #4
vpush {d8}
sub sp, sp, #8
we can fold the "sub" into the "vpush", forming "vpush {d7, d8}".
However, in that case the "add fp" instruction mustn't change, which
we were getting wrong before.
Should fix PR18160.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196725 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR17872. This bug can lead to C++ destructors not being
called when they should be, when an exception is thrown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196711 91177308-0d34-0410-b5e6-96231b3b80d8
Before this change, inlining one "invoke" into an outer "invoke" call
site can lead to the outer landingpad's catch/filter clauses being
copied multiple times into the resulting landingpad. This happens:
* when the inlined function contains multiple "resume" instructions,
because forwardResume() copies the clauses but is called multiple
times;
* when the inlined function contains a "resume" and a "call", because
HandleCallsInBlockInlinedThroughInvoke() copies the clauses but is
redundant with forwardResume().
Fix this by deduplicating the code.
This problem doesn't lead to any incorrect execution; it's only
untidy.
This change will make fixing PR17872 a little easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196710 91177308-0d34-0410-b5e6-96231b3b80d8
Indent the command lines to indicate they continue from previous lines. Also,
fix incorrect uses of CHECK-DAG and CHECK-NOT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196636 91177308-0d34-0410-b5e6-96231b3b80d8
The sefault occurs due to an infinite loop when the verifier tries to
determine the size of a type of the form "%rt = type { %rt }" while
checking an alloca of the type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196626 91177308-0d34-0410-b5e6-96231b3b80d8
The integrated assembler fails to properly lex arm comments when
they are adjacent to an identifier in the input stream. The reason
is that the arm comment symbol '@' is also used as symbol variant in
other assembly languages so when lexing an identifier it allows the
'@' symbol as part of the identifier.
Example:
$ cat comment.s
foo:
add r0, r0@got to parse this as a comment
$ llvm-mc -triple armv7 comment.s
comment.s:4:18: error: unexpected token in argument list
add r0, r0@got to parse this as a comment
^
This should be parsed as correctly as `add r0, r0`.
This commit modifes the assembly lexer to not include the '@' symbol
in identifiers when lexing for targets that use '@' for comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196607 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies reasoning about the code and enables simple navigation
from a skeleton to its full unit. (currently there are no type unit
skeletons, so the skeleton list doesn't have the same ID == index
property)
Eventually we should get rid of this ID and just store the labels we
need as the IDs are allowing this code to create difficult to
manage/understand associations (loops over non-skeletal units are
implicitly referencing their skeletal units during pub* emission, for
example). It may be necessary to have some kind of skeleton->full unit
association and a more direct pointer or similar device would be
preferable than an index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196600 91177308-0d34-0410-b5e6-96231b3b80d8
The current peephole optimizing for compare inst assumes an instr that
uses CPSR has an MO for ARM Cond code.However, for VSEL instructions
(vseqeq, vselgt, vselgt, vselvs), there is no such operand nor do
they support the modification of Cond Code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196588 91177308-0d34-0410-b5e6-96231b3b80d8
Since z has no setcc instruction as such, the choice of setBooleanContents
is a bit arbitrary. Currently it's set to ZeroOrOneBooleanContent,
so we produced a branch-free form when selecting between 0 and 1,
but not when selecting between 0 and -1. This patch handles the latter
case too.
At some point I'd like to measure whether it's better to use conditional
moves for constant selects on z196, but that's future work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196578 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196568 91177308-0d34-0410-b5e6-96231b3b80d8
Test is platform independent, but I don't want to force vector-width, or
that could spoil the pragma test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196539 91177308-0d34-0410-b5e6-96231b3b80d8
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.
This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.
The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.
Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196537 91177308-0d34-0410-b5e6-96231b3b80d8
We were creating external uses for scalar values in MustGather entries that also
had a ScalarToTreeEntry (they also are present in a vectorized tuple). This
meant we would keep a value 'alive' as a scalar and vectorized causing havoc.
This is not necessary because when we create a MustGather vector we explicitly
create external uses entries for the insertelement instructions of the
MustGather vector elements.
Fixes PR18129.
radar://15582184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196508 91177308-0d34-0410-b5e6-96231b3b80d8
in case the operands are constants and its difference is |1|.
It should be possible in those cases to rematerialize the result using
MIPS's slt and similar instructions.
The small update to some of the tests in cmov.ll, sel1c.ll and sel2c.ll was needed
otherwise the optimization implemented in this patch would have been triggered
(difference between the operands was 1) and that would have changed the semantic
of the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196498 91177308-0d34-0410-b5e6-96231b3b80d8
not being correctly encoded/decoded.
In more detail, immediate fields of LD/ST instructions should be
divided/multiplied by the size of the data format before encoding and
after decoding, respectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196494 91177308-0d34-0410-b5e6-96231b3b80d8
We were trying to fold the stack adjustment into the wrong instruction in the
situation where the entire basic-block was epilogue code. Really, it can only
ever be valid to do the folding precisely where the "add sp, ..." would be
placed so there's no need for a separate iterator to track that.
Should fix PR18136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196493 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
given
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1)
declare void @foo()
define void @bar() {
call void @foo()
call void @llvm.memset.p0i8.i32(i8* null, i8 0, i32 188, i32 1, i1 false)
ret void
}
We used to produce
L_foo$stub:
.indirect_symbol _foo
.ascii "\364\364\364\364\364"
_memset$stub:
.indirect_symbol _memset
.ascii "\364\364\364\364\364"
We not produce a private stub for memset too.
Stubs are not needed with recent linkers, but we still produce them for darwin8.
Thanks to David Fang for confirming that gcc used to do this too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196468 91177308-0d34-0410-b5e6-96231b3b80d8
ELF_Other_Weakref and ELF_Other_ThumbFunc seems to be LLVM
internal ELF symbol flags. These should not be emitted to
object file.
This commit defines ELF_STO_Shift for the target-defined
flags for st_other, and increase the value of
ELF_Other_Shift to 16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196440 91177308-0d34-0410-b5e6-96231b3b80d8
Where it would use a scattered relocation entry but falls back to a
normal relocation entry because the FixupOffset is more than 24-bits.
The bug is in the X86MachObjectWriter::RecordScatteredRelocation() where
it changes reference parameter FixedValue but then returns false to indicate
it did not create a scattered relocation entry. The fix is simply to save the
original value of the parameter FixedValue at the start of the method and
restore it if we are returning false in that case.
rdar://15526046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196432 91177308-0d34-0410-b5e6-96231b3b80d8
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196424 91177308-0d34-0410-b5e6-96231b3b80d8
This currently breaks clang/test/CodeGen/code-coverage.c. The root cause
is that the newly introduced access to Funcs[j] is out of bounds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196365 91177308-0d34-0410-b5e6-96231b3b80d8
this completes the basic port of ARM constant islands to Mips16.
More testing, code review, cleanup is in order but basically everything
seems to be working. A bug in gas is preventing some of the runtime
testing but I hope to resolve this soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196331 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike msvc, when handling a thiscall + sret gcc will
* Put the sret in %ecx
* Put the this pointer is (%esp)
This fixes, for example, calling stringstream::str.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196312 91177308-0d34-0410-b5e6-96231b3b80d8
Copy all test files to temporary directory, not just test.* files. Tests
didn't fail because the missing files occurred in XFAILS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196305 91177308-0d34-0410-b5e6-96231b3b80d8
clang enables vectorization at optimization levels > 1 and size level < 2. opt
should behave similarily.
Loop vectorization and SLP vectorization can be disabled with the flags
-disable-(loop/slp)-vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196294 91177308-0d34-0410-b5e6-96231b3b80d8
The backend converts 64-bit ORs into subreg moves if the upper 32 bits
of one operand and the low 32 bits of the other are known to be zero.
It then tries to peel away redundant ANDs from the upper 32 bits.
Since AND masks are canonicalized to exclude known-zero bits,
the test ORs the mask and the known-zero bits together before
checking for redundancy. The problem was that it was using the
wrong node when checking for known-zero bits, so could drop ANDs
that were still needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196267 91177308-0d34-0410-b5e6-96231b3b80d8
- The fix to PR17631 fixes part of the cases where 'vzeroupper' should
not be issued before 'call' insn. There're other cases where helper
calls will be inserted not limited to epilog. These helper calls do
not follow the standard calling convention and won't clobber any YMM
registers. (So far, all call conventions will clobber any or part of
YMM registers.)
This patch enhances the previous fix to cover more cases 'vzerosupper' should
not be inserted by checking if that function call won't clobber any YMM
registers and skipping it if so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196261 91177308-0d34-0410-b5e6-96231b3b80d8
The communication protocol is unstable on ARM when compiled
with Clang, which is disrupting the self-hosting buildbots that
are going to be added this week. I'm working on a solution, but
remote MCJIT is not high-priority for ARM at the moment, so it
might take a while.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196257 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that in some build systems, tests are executed in a
non-writable directory. Hopefully, this finally fixes the issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196256 91177308-0d34-0410-b5e6-96231b3b80d8
With r196184, llvm-cov creates a new file right next to the input file.
However, the Inputs-directory can't simply be assumed to be writable
under all build systems.
Also, this prevents a new source file from showing up in the source tree
if the test aborts before the call to "rm".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196228 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of asking the user to specify a single file to output coverage
info and defaulting to STDOUT, llvm-cov now creates files for each
source file with a naming system of: <source filename> + ".llcov".
This is what gcov does and although it can clutter the working directory
with numerous coverage files, it will be easier to hook the llvm-cov
output to tools which operate on this assumption (such as lcov).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196184 91177308-0d34-0410-b5e6-96231b3b80d8
Add a helper function getDebugInfoVersionFromModule to return the debug info
version number for a module.
"Verifier/module-flags-1.ll" checks for verification errors.
It will seg fault when calling getDebugInfoVersionFromModule because of the
incorrect format for module flags in the testing case. We make
getModuleFlagsMetadata more robust by checking for error conditions.
PR17982
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196158 91177308-0d34-0410-b5e6-96231b3b80d8
The profile file parser needed some tests for its parsing actions.
This adds tests for each of the error messages emitted by the parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196106 91177308-0d34-0410-b5e6-96231b3b80d8
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196091 91177308-0d34-0410-b5e6-96231b3b80d8
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196087 91177308-0d34-0410-b5e6-96231b3b80d8
Large frame offsets are loaded from the ConstantPool.
Where possible, offsets are encoded using the smaller MKMSK instruction.
Large frame offsets can only be used when there is a frame-pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196085 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196046 91177308-0d34-0410-b5e6-96231b3b80d8
Convert this test to FileCheck, and improve it to check for the instructions it
is trying to exclude instead of checking for register use (especially because
grepping for r1 can be thrown off, for example, by a use of r12).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195979 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these tests did not specify a cpu but were also sensitive to
instruction scheduling and/or register assignment choices. A few others
similarly-sensitive tests specified a cpu (often the POWER7), and while the P7
currently uses the default model for PPC64, this will soon change. For those
tests which should not really be cpu-dependent anyway, the cpu is set to the
generic 'ppc64'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195977 91177308-0d34-0410-b5e6-96231b3b80d8
This prevents the compiler from emitting invalid ld.[bhwd]'s and st.[bhwd]'s
when the stack frame is between 512 and 32,768 bytes in size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195973 91177308-0d34-0410-b5e6-96231b3b80d8
in constant islands for Mips16. We introdcuce JalB16 as a synomnym
for Jal16. It makes it easier to read and is also necessary because
Jal16 is a call instruction but JalB16 is being used as a branch.
Various parts of LLVM will not work properly even in this late stage of
the backend if we use what was declared as a call instruction to function
as a branch. For one, basic block labels may not get emitted in some
situations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195968 91177308-0d34-0410-b5e6-96231b3b80d8
XFAIL llvm-cov.test for MIPS until big-endian issues are fixed for llvm-cov.
The test does pass on MIPS little-endian.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195966 91177308-0d34-0410-b5e6-96231b3b80d8
conditional branches for very large targets. That will be the next small
patch. Everything now should in principle work as good (functionality
wise) as without constant islands so we decided at Mips/Imagination to
make constant islands the default for Mips16 now so that it will get
excercised a lot and this port is still experimentatl though hopefully soon
we will change the status. Some more cleanup and code review is in order
but things are converging fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195902 91177308-0d34-0410-b5e6-96231b3b80d8
ARanges included even extern variables referenced by pointer non-type
template parameters even though that variable isn't part of this
compilation unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195895 91177308-0d34-0410-b5e6-96231b3b80d8
make PIC calls a little more efficient:
1. Remove instructions setting up $gp if it is known that a function has been
called at least once.
2. Save the address of a called function in a register instead of loading
it from the GOT at every call site.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195892 91177308-0d34-0410-b5e6-96231b3b80d8
SGPRs are spilled into VGPRs using the {READ,WRITE}LANE_B32 instructions.
v2:
- Fix encoding of Lane Mask
- Use correct register flags, so we don't overwrite the low dword
when restoring multi-dword registers.
v3:
- Register spilling seems to hang the GPU, so replace all shaders
that need spilling with a dummy shader.
v4:
- Fix *LANE definitions
- Change destination reg class for 32-bit SMRD instructions
v5:
- Remove small optimization that was crashing Serious Sam 3.
https://bugs.freedesktop.org/show_bug.cgi?id=68224https://bugs.freedesktop.org/show_bug.cgi?id=71285
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195880 91177308-0d34-0410-b5e6-96231b3b80d8
Writing to the M0 register from an SMRD instruction hangs the GPU, so
we need to use the SGPR_32 register class, which does not include M0.
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195879 91177308-0d34-0410-b5e6-96231b3b80d8
We currently error in clang with:
"error: thread-local storage is unsupported for the current target", but we
can start to get the llvm level ready.
When compiling
template<typename T>
struct foo {
static __declspec(thread) int bar;
};
template<typename T>
__declspec(therad) int foo<T>::bar;
template struct foo<int>;
msvc produces
SECTION HEADER #3
.tls$ name
0 physical address
0 virtual address
4 size of raw data
12F file pointer to raw data (0000012F to 00000132)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
C0301040 flags
Initialized Data
COMDAT; sym= "public: static int foo<int>::bar" (?bar@?$foo@H@@2HA)
4 byte align
Read Write
gcc produces a ".data$__emutls_v.<symbol>" for the testcase with
__declspec(thread) replaced with thread_local.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195849 91177308-0d34-0410-b5e6-96231b3b80d8
It is only used for asm printing.
On X86 we put basic block addresses on register before passing them to inline
asm, so the MO_MachineBasicBlock case was dead.
MO_ExternalSymbol was dead since any symbol being passed to inline asm
is represented as MO_GlobalAddress.
The MO_GlobalAddress and MO_Register cases were not tested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195824 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch we use simple names for COMDAT sections (like .text or .bss).
This matches the MSVC behavior.
When merging it is the COMDAT symbol that is used to decide if two sections
should be merged, so there is no point in building a fancy name.
This survived a bootstrap on mingw32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195798 91177308-0d34-0410-b5e6-96231b3b80d8
may be removed and optimized in future iterations. Instead we save a list of basic blocks that we need to CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195791 91177308-0d34-0410-b5e6-96231b3b80d8
In signed arithmetic we could end up with an i64 trip count for an i32 phi.
Because it is signed arithmetic we know that this is only defined if the i32
does not wrap. It is therefore safe to truncate the i64 trip count to a i32
value.
Fixes PR18049.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195787 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix bug in (vsext (vzext x)) -> (vsext x) in SIGN_EXTEND_IN_REG
lowering where we need to check whether x is a vector type (in-reg
type) of i8, i16 or i32; otherwise, that optimization is not valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195779 91177308-0d34-0410-b5e6-96231b3b80d8
Since type units aren't in the CUMap, use the DwarfUnits list to iterate
over units for tasks such as accelerator table building.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195776 91177308-0d34-0410-b5e6-96231b3b80d8
we generate PHI nodes with multiple entries from the same basic block but
with different values. Enabling CSE on ExtractElement instructions make sure
that all of the RAUWed instructions are the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195773 91177308-0d34-0410-b5e6-96231b3b80d8
Short description.
This issue is about case of treating pointers as integers.
We treat pointers as different if they references different address space.
At the same time, we treat pointers equal to integers (with machine address
width). It was a point of false-positive. Consider next case on 32bit machine:
void foo0(i32 addrespace(1)* %p)
void foo1(i32 addrespace(2)* %p)
void foo2(i32 %p)
foo0 != foo1, while
foo1 == foo2 and foo0 == foo2.
As you can see it breaks transitivity. That means that result depends on order
of how functions are presented in module. Next order causes merging of foo0
and foo1: foo2, foo0, foo1
First foo0 will be merged with foo2, foo0 will be erased. Second foo1 will be
merged with foo2.
Depending on order, things could be merged we don't expect to.
The fix:
Forbid to treat any pointer as integer, except for those, who belong to address space 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195769 91177308-0d34-0410-b5e6-96231b3b80d8
We would wrongly transform the testcase into the equivalent of an AND with 1.
The problem was that, when testing whether the shifted-in bits of the right
shift were significant, we used the width of the final zero-extended result
rather than the width of the shifted value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195731 91177308-0d34-0410-b5e6-96231b3b80d8
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195712 91177308-0d34-0410-b5e6-96231b3b80d8
The dumper was only dumping one pubtypes set and it was /always/ dumping
one pubtypes set even when there were zero sets. Now that the dumper
correctly dumps zero, one, or many sets, we can update this test case to
test for the absolute absence of a set rather than a bogus/accidental
zero-valued set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195706 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Mikulas Patocka. I added the test. I checked that for cpu names that
gas knows about, it also doesn't generate nopl.
The modified cpus:
i686 - there are i686-class CPUs that don't have nopl: Via c3, Transmeta
Crusoe, Microsoft VirtualBox - see
https://bbs.archlinux.org/viewtopic.php?pid=775414
k6, k6-2, k6-3, winchip-c6, winchip2 - these are 586-class CPUs
via c3 c3-2 - see https://bugs.archlinux.org/task/19733 as a proof that
Via c3 and c3-Nehemiah don't have nopl
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195679 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes a bug in the assembler that was causing bad code to
be emitted. When switching modes in an assembly file (e.g. arm to
thumb mode) we would always emit the opcode from the original mode.
Consider this small example:
$ cat align.s
.code 16
foo:
add r0, r0
.align 3
add r0, r0
$ llvm-mc -triple armv7-none-linux align.s -filetype=obj -o t.o
$ llvm-objdump -triple thumbv7 -d t.o
Disassembly of section .text:
foo:
0: 00 44 add r0, r0
2: 00 f0 20 e3 blx #4195904
6: 00 00 movs r0, r0
8: 00 44 add r0, r0
This shows that we have actually emitted an arm nop (e320f000)
instead of a thumb nop. Unfortunately, this encodes to a thumb
branch which causes bad things to happen when compiling assembly
code with align directives.
The fix is to notify the ARMAsmBackend when we switch mode. The
MCMachOStreamer was already doing this correctly. This patch makes
the same change for the MCElfStreamer.
There is still a bug in the way nops are emitted for alignment
because the MCAlignment fragment does not store the correct mode.
The ARMAsmBackend will emit nops for the last mode it knew about. In
the example above, we still generate an arm nop if we add a `.code
32` to the end of the file.
PR18019
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195677 91177308-0d34-0410-b5e6-96231b3b80d8
These should not use COMDATs. GNU as uses .bss for .lcomm and section 0 for
.comm.
Given
static int a;
int b;
MSVC puts both in .bss. This patch then puts both .comm and .lcomm on .bss. With
this change we agree with gas on .lcomm, are much closer on .comm and clang-cl
matches msvc on the above example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195654 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Moved the requirement for SelectionDAG::getConstant() to return legally
typed nodes slightly earlier. There were two optional DAGCombine passes
that were missed out and were required to produce type-legal DAGs.
Simplified a code-path in tryFoldToZero() to use SelectionDAG::getConstant().
This provides support for both promoted and expanded vector types whereas the
previous code only supported promoted vector types.
Fixes a "Type for zero vector elements is not legal" assertion detected by
an llvm-stress generated test.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2251
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195635 91177308-0d34-0410-b5e6-96231b3b80d8
to what is needed for constant islands. The prescan method for Mips16 constant
islands will eventually go away. It is only temporary and should be done
earlier when the instructions are first created or from the DAG. If we keep
it here we need to handle better the situation where constant islands
is called multiple times since don't want to prescan more than once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195569 91177308-0d34-0410-b5e6-96231b3b80d8
I had to move some code and I moved a declaration forward past it's first use
in the function but by nutty coincidence there was another variable of the same
name and type and with completely unrelated function that was declared globally
in the class so no compilation error ensued.
It required some unusual conditions for it to even matter. Caused test
case casts.c in test-suite to fail during compilation with a duplicate
symbol error. I would have noticed it during final code review for this port.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195565 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195535 91177308-0d34-0410-b5e6-96231b3b80d8
We were ignoring the ordered/onordered bits and also the signed/unsigned
bits of condition codes when lowering the DAG to MachineInstrs.
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195514 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195504 91177308-0d34-0410-b5e6-96231b3b80d8
Utilizing the 8 and 16 bit comparison instructions, even when an input can
be folded into the comparison instruction itself, is typically not worth it.
There are too many partial register stalls as a result, leading to significant
slowdowns. By always performing comparisons on at least 32-bit
registers, performance of the calculation chain leading to the
comparison improves. Continue to use the smaller comparisons when
minimizing size, as that allows better folding of loads into the
comparison instructions.
rdar://15386341
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195496 91177308-0d34-0410-b5e6-96231b3b80d8
If the beginning of the loop was also the entry block
of the function, branches were inserted to the entry block
which isn't allowed. If this occurs, create a new dummy
function entry block that branches to the start of the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195493 91177308-0d34-0410-b5e6-96231b3b80d8
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195491 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.
original message:
Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195477 91177308-0d34-0410-b5e6-96231b3b80d8
- When simplifying the mask generation for BLEND, check whether that mask is
also consumed by other non-BLEND insns. If true, skip that simplification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195476 91177308-0d34-0410-b5e6-96231b3b80d8
I've no idea why I decided to handle TMxx differently from all the other
high/low logic operations, but it was a stupid thing to do. The high
registers aren't available as separate 32-bit registers on z10,
so subreg_h32 can't be used on a GR64 there.
I've normally been testing with z196 and with -O3 and so hadn't noticed
this until now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195473 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195470 91177308-0d34-0410-b5e6-96231b3b80d8
e.g. "%tmp = load <2 x i64>* %ptr" can't be selected.
"%tmp = bitcast i64 %in to <2 x i32>" can't be selected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195424 91177308-0d34-0410-b5e6-96231b3b80d8
The legalizer can now do this type of expansion for more
type combinations without loading and storing to and
from the stack.
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195398 91177308-0d34-0410-b5e6-96231b3b80d8
section use the form DW_FORM_data4 whilst in Dwarf 4 and later they
use the form DW_FORM_sec_offset.
This patch updates the places where such attributes are generated to
use the appropriate form depending on the Dwarf version. The DIE entries
affected have the following tags:
DW_AT_stmt_list, DW_AT_ranges, DW_AT_location, DW_AT_GNU_pubnames,
DW_AT_GNU_pubtypes, DW_AT_GNU_addr_base, DW_AT_GNU_ranges_base
It also adds a hidden command line option "--dwarf-version=<uint>"
to llc which allows the version of Dwarf to be generated to override
what is specified in the metadata; this makes it possible to update
existing tests to check the debugging information generated for both
Dwarf 4 (the default) and Dwarf 3 using the same metadata.
Patch (slightly modified) by Keith Walker!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195391 91177308-0d34-0410-b5e6-96231b3b80d8
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195383 91177308-0d34-0410-b5e6-96231b3b80d8
The new command line flags are -dfsan-ignore-pointer-label-on-store and -dfsan-ignore-pointer-label-on-load. Their default value matches the current labelling scheme.
Additionally, the function __dfsan_union_load is marked as readonly.
Patch by Lorenzo Martignoni!
Differential Revision: http://llvm-reviews.chandlerc.com/D2187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195382 91177308-0d34-0410-b5e6-96231b3b80d8
Mask == ~InvMask asserts if the width of Mask and InvMask differ.
The combine isn't valid (with two exceptions, see below) if the widths differ
so test for this before testing Mask == ~InvMask.
In the specific cases of Mask=~0 and InvMask=0, as well as Mask=0 and
InvMask=~0, the combine is still valid. However, there are more appropriate
combines that could be used in these cases such as folding x & 0 to 0, or
x & ~0 to x.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195364 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LegalizeSetCCCondCode can now legalize SETEQ and SETNE by returning the inverse
condition and requesting that the caller invert the result of the condition.
The caller of LegalizeSetCCCondCode must handle the inverted CC, and they do
so as follows:
SETCC, BR_CC:
Invert the result of the SETCC with SelectionDAG::getNOT()
SELECT_CC:
Swap the true/false operands.
This is necessary for MSA which lacks an integer SETNE instruction.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195355 91177308-0d34-0410-b5e6-96231b3b80d8
It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195339 91177308-0d34-0410-b5e6-96231b3b80d8
clang optimizes tail calls, as in this example:
int foo(void);
int bar(void) {
return foo();
}
where the call is transformed to:
calll .L0$pb
.L0$pb:
popl %eax
.Ltmp0:
addl $_GLOBAL_OFFSET_TABLE_+(.Ltmp0-.L0$pb), %eax
movl foo@GOT(%eax), %eax
popl %ebp
jmpl *%eax # TAILCALL
However, the GOT references must all be resolved at dlopen() time, and so this
approach cannot be used with lazy dynamic linking (e.g. using RTLD_LAZY), which
usually populates the PLT with stubs that perform the actual resolving.
This patch changes X86TargetLowering::LowerCall() to skip tail call
optimization, if the called function is a global or external symbol.
Patch by Dimitry Andric!
PR15086
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195318 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction definitions incorrectly specified that popcntd and popcntw have
record forms; they do not. This mistake was causing invalid code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195272 91177308-0d34-0410-b5e6-96231b3b80d8
We now only allow breaking source order if the exit block frequency is
significantly higher than the other exit block. The actual bias is
currently under a flag so the best cut-off can be found; the flag
defaults to the old behavior. The idea is to get some benchmark coverage
over different values for the flag and pick the best one.
When we require the new frequency to be at least 20% higher than the old
frequency I see a 5% speedup on zlib's deflate when compressing a random
file on x86_64/westmere. Hal reported a small speedup on Fhourstones on
a BG/Q and no regressions in the test suite.
The test case is the full long_match function from zlib's deflate. I was
reluctant to add it for previous tweaks to branch probabilities because
it's large and potentially fragile, but changed my mind since it's an
important use case and more likely to break with all the current work
going into the PGO infrastructure.
Differential Revision: http://llvm-reviews.chandlerc.com/D2202
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195265 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Directives are being ignored, when they occur between a partial-word false
match and any match on another prefix.
For example, with FOO and BAR prefixes:
_FOO
FOO: foo
BAR: bar
FileCheck incorrectly matches:
fog
bar
This happens because FOO falsely matched as a partial word at '_FOO' and was
ignored while BAR matched at 'BAR:'. The match of BAR is incorrectly returned
as the 'first match' causing the FOO directive to be discarded.
Fixed this the same way as r194565 (D2166) did for a similar test case.
The partial-word false match should be counted as a match for the purposes of
finding the first match of a prefix, but should be returned as a false match
using CheckTy::CheckNone so that it isn't treated as a directive.
Fixes PR17995
Reviewers: samsonov, arsenm
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2228
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195248 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195191 91177308-0d34-0410-b5e6-96231b3b80d8
Masking operations (where only some number of the low bits are being kept) are
selected to rldicl(x, 0, mb). If x is a logical right shift (which would become
rldicl(y, 64-n, n)), we might be able to fold the two instructions together:
rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) for n <= mb
The right shift is really a left rotate followed by a mask, and if the explicit
mask is a more-restrictive sub-mask of the mask implied by the shift, only one
rldicl is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195185 91177308-0d34-0410-b5e6-96231b3b80d8
Emit DW_TAG_type_units into the debug_info section using compile unit
headers. This is bogus/unusable by debuggers, but testable and provides
more isolated review.
Subsequent patches will include support for type unit headers and
emission into the debug_types section, as well as comdat grouping the
types based on their hash. Also the CompileUnit type will be renamed
'Unit' and relevant portions pulled out into respective CompileUnit and
TypeUnit types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195166 91177308-0d34-0410-b5e6-96231b3b80d8
We are slicing an array of Value pointers and process those slices in a loop.
The problem is that we might invalidate a later slice by vectorizing a former
slice.
Use a WeakVH to track the pointer. If the pointer is deleted or RAUW'ed we can
tell.
The test case will only fail when running with libgmalloc.
radar://15498655
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195162 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of processing relocation for branch to stubs right away, emit a
modified relocation and add it to queue to be resolved later when final load
address is known.
This resolves seven MIPS MCJIT issues that were caused by missing relocation
fixups at the end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195157 91177308-0d34-0410-b5e6-96231b3b80d8
The object files we support use null terminated strings, so there is no way to
support these.
This patch adds an assert to catch bad API use and an error check in the .ll
parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195155 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first step to fix pr17918.
It extends the .section directive a bit, inspired by what the ELF one looks
like. The problem with using linkonce is that given
.section foo
.linkonce....
.section foo
.linkonce
we would already have switched sections when getting to .linkonce. The cleanest
solution seems to be to add the comdat information in the .section itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195148 91177308-0d34-0410-b5e6-96231b3b80d8
Hard float for mips16 means essentially to compile as soft float but to
use a runtime library for soft float that is written with native mips32
floating point instructions (those runtime routines run in mips32 hard
float mode).
The patch reviewed by Reed Kotler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195123 91177308-0d34-0410-b5e6-96231b3b80d8
order of slices of the alloca which have exactly the same size and other
properties. This was found by a perniciously unstable sort
implementation used to flush out buggy uses of the algorithm.
The fundamental idea is that findCommonType should return the best
common type it can find across all of the slices in the range. There
were two bugs here previously:
1) We would accept an integer type smaller than a byte-width multiple,
and if there were different bit-width integer types, we would accept
the first one. This caused an actual failure in the testcase updated
here when the sort order changed.
2) If we found a bad combination of types or a non-load, non-store use
before an integer typed load or store we would bail, but if we found
the integere typed load or store, we would use it. The correct
behavior is to always use an integer typed operation which covers the
partition if one exists.
While a clever debugging sort algorithm found problem #1 in our existing
test cases, I have no useful test case ideas for #2. I spotted in by
inspection when looking at this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195118 91177308-0d34-0410-b5e6-96231b3b80d8
A column limit in the test folder can lead to trouble as the RUN, CHECK,
etc. comments can potentially be broken over multiple lines changing
their meaning. Without column limit, clang-format will simply keep the
test author's line breaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195100 91177308-0d34-0410-b5e6-96231b3b80d8
No true functional changes.
Change the "hack" name of emitMipsHackSTOCG to emitSymSTO.
Remove demonstration code in AsmParser for emitMipsHackSTOCG and
emitMipsHackELFFlags. The STO field is in an ELF symbol and is not
an explicit directive. That said, we are missing the compliment call
in AsmParser and that will need to be addressed soon.
XFAIL dummy tests for emitMipsHackELFFlags and emitMipsHackELFFlags.
These will built out with following patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195067 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r190888, to fix PR17967. The original change wasn't
the right way to get @feat.00 into the object file. The right fix is to
make @feat.00 be a global symbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195053 91177308-0d34-0410-b5e6-96231b3b80d8
lowering only for load/stores to scalar allocas. The resulting values
confuse the backend and don't add anything because we can describe
array-allocas with a dbg.declare intrinsic just fine.
rdar://problem/15464571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195052 91177308-0d34-0410-b5e6-96231b3b80d8
(except functions marked always_inline).
Functions with 'optnone' must also have 'noinline' so they don't get
inlined into any other function.
Based on work by Andrea Di Biagio.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195046 91177308-0d34-0410-b5e6-96231b3b80d8
Test doesn't actually check the output. I need
to fix add i64 being matched for the addressing
calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195040 91177308-0d34-0410-b5e6-96231b3b80d8
In some case the loop exit count computation can overflow. Extend the type to
prevent most of those cases.
The problem is loops like:
int main ()
{
int a = 1;
char b = 0;
lbl:
a &= 4;
b--;
if (b) goto lbl;
return a;
}
The backedge count is 255. The induction variable type is i8. If we add one to
255 to get the exit count we overflow to zero.
To work around this issue we extend the type of the induction variable to i32 in
the case of i8 and i16.
PR17532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195008 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed an inappropriate use of BuildPairF64 when compiling for MIPS32 with FP64
which resulted in an impossible constraint on the register allocation. It now
uses BuildPairF64_64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195007 91177308-0d34-0410-b5e6-96231b3b80d8
Generally speaking, control flow paths with error reporting calls are cold.
So far, error reporting calls are calls to perror and calls to fprintf,
fwrite, etc. with stderr as the stream. This can be extended in the future.
The primary motivation is to improve block placement (the cold attribute
affects the static branch prediction heuristics).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194943 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing this on bigendian platforms could get strange. I added a
target hook, getStackSlotRange, per Jakob's recommendation to make
this as explicit as possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194942 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194939 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine, in visitFPTrunc, applies the following optimization to sqrt calls:
(fptrunc (sqrt (fpext x))) -> (sqrtf x)
but does not apply the same optimization to llvm.sqrt. This is a problem
because, to enable vectorization, Clang generates llvm.sqrt instead of sqrt in
fast-math mode, and because this optimization is being applied to sqrt and not
applied to llvm.sqrt, sometimes the fast-math code is slower.
This change makes InstCombine apply this optimization to llvm.sqrt as well.
This fixes the specific problem in PR17758, although the same underlying issue
(optimizations applied to libcalls are not applied to intrinsics) exists for
other optimizations in SimplifyLibCalls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194935 91177308-0d34-0410-b5e6-96231b3b80d8