basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106299 91177308-0d34-0410-b5e6-96231b3b80d8
does for {flags}. If we create virtual registers of the CCR class, RegAllocFast
may try to spill them, and we can't do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106289 91177308-0d34-0410-b5e6-96231b3b80d8
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106243 91177308-0d34-0410-b5e6-96231b3b80d8
call must not be callee-saved; following x86, add a new
regclass to represent this. Also fixes a couple of bugs.
Still disabled by default; Thumb doesn't work yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106053 91177308-0d34-0410-b5e6-96231b3b80d8
immediate" operands. These functions have so far only been used for VMOV
but they also apply to other NEON instructions with modified immediate
operands. No functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105969 91177308-0d34-0410-b5e6-96231b3b80d8
i64 and f64 types, but now it also handle Neon vector types, so the f64 result
of VMOVDRR may need to be converted to a Neon type. Radar 8084742.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105845 91177308-0d34-0410-b5e6-96231b3b80d8
the machine instruction representation of the immediate value to be encoded
into an integer with similar fields as the actual VMOV instruction. This makes
things easier for the disassembler, since it can just stuff the bits into the
immediate operand, but harder for the asm printer since it has to decode the
value to be printed. Testcase for the encoding will follow later when MC has
more support for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105836 91177308-0d34-0410-b5e6-96231b3b80d8
dbg_value immediately follows a sequence of ldr/str instructions that should
be combined into an ldm/stm and is the last instruction in the block, then
combine may end up being skipped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105758 91177308-0d34-0410-b5e6-96231b3b80d8
the same condition, it's important to make sure they are scheduled together
to avoid forming multiple IT blocks. I'm adding a pre-regalloc pass that forms
IT blocks early (by re-scheduling instructions and split basic blocks) to
attempt to fix this. This is not turned on by default since I am not sure this
is the right fix.
Another issue is llvm selects are modeled as two-address conditional moves.
This can be very bad when the copies before the conditional moves are not
coalesced away. Teach IT formation pass to move the copies above the IT block
(when legal) to avoid breaking the IT block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105669 91177308-0d34-0410-b5e6-96231b3b80d8
- change isShuffleMaskLegal to show that all shuffles with 32-bit and 64-bit
elements are legal
- the Neon shuffle instructions do not support 64-bit elements, but we were
not checking for that before lowering shuffles to use them
- remove some 64-bit element vduplane patterns that are no longer needed
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105586 91177308-0d34-0410-b5e6-96231b3b80d8
In file included from X86InstrInfo.cpp:16:
X86GenInstrInfo.inc:2789: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2790: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2792: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2793: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2808: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2809: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2816: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2817: error: integer constant is too large for 'long' type
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105524 91177308-0d34-0410-b5e6-96231b3b80d8
VECTOR_SHUFFLEs to REG_SEQUENCE instructions. The standard ISD::BUILD_VECTOR
node corresponds closely to REG_SEQUENCE but I couldn't use it here because
its operands do not get legalized. That is pretty awful, but I guess it
makes sense for other targets. Instead, I have added an ARM-specific version
of BUILD_VECTOR that will have its operands properly legalized.
This fixes the rest of Radar 7872877.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105439 91177308-0d34-0410-b5e6-96231b3b80d8
A temporary flag -arm-tail-calls defaults to off,
so there is no functional change by default.
Intrepid users may try this; simple cases work
but there are bugs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105413 91177308-0d34-0410-b5e6-96231b3b80d8
instruction defines subregisters.
Any existing subreg indices on the original instruction are preserved or
composed with the new subreg index.
Also substitute multiple operands mentioning the original register by using the
new MachineInstr::substituteRegister() function. This is necessary because there
will soon be <imp-def> operands added to non read-modify-write partial
definitions. This instruction:
%reg1234:foo = FLAP %reg1234<imp-def>
will reMaterialize(%reg3333, bar) like this:
%reg3333:bar-foo = FLAP %reg333:bar<imp-def>
Finally, replace the TargetRegisterInfo pointer argument with a reference to
indicate that it cannot be NULL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105358 91177308-0d34-0410-b5e6-96231b3b80d8
should fall through to the 'H' case, but instead 'Q' was falling through to 'R'
so that it would do the wrong thing for a big-endian ARM target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104883 91177308-0d34-0410-b5e6-96231b3b80d8
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104704 91177308-0d34-0410-b5e6-96231b3b80d8
A Register with subregisters must also provide SubRegIndices for adressing the
subregisters. TableGen automatically inherits indices for sub-subregisters to
minimize typing.
CompositeIndices may be specified for the weirder cases such as the XMM sub_sd
index that returns the same register, and ARM NEON Q registers where both D
subregs have ssub_0 and ssub_1 sub-subregs.
It is now required that all subregisters are named by an index, and a future
patch will also require inherited subregisters to be named. This is necessary to
allow composite subregister indices to be reduced to a single index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104654 91177308-0d34-0410-b5e6-96231b3b80d8
SubRegIndex instances are now numbered uniquely the same way Register instances
are - in lexicographical order by name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104627 91177308-0d34-0410-b5e6-96231b3b80d8
I don't know of any particular reason why that would be important, but
neither can I see any reason to disallow it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104583 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb2 ADD and SUB instructions: allow RSB instructions be changed to set the
condition codes, and allow RSBS instructions to be predicated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104582 91177308-0d34-0410-b5e6-96231b3b80d8
structure that represents a mapping without any dependencies on SubRegIndex
numbering.
This brings us closer to being able to remove the explicit SubRegIndex
numbering, and it is now possible to specify any mapping without inventing
*_INVALID register classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104563 91177308-0d34-0410-b5e6-96231b3b80d8
Fix it by changing the T2I_rbin_s_is multiclass to handle the CPSR
output and 'S' suffix in the same way as T2I_bin_s_irs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104531 91177308-0d34-0410-b5e6-96231b3b80d8
copying VFP subregs. This exposed a bunch of dead code in the *spill-q.ll
tests, so I tweaked those tests to keep that code from being optimized away.
Radar 7872877.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104415 91177308-0d34-0410-b5e6-96231b3b80d8
too large limit.
The function would return immediately when finding an addrmode 3/5 instruction.
It needs to keep scanning in case there is an addrmode 6 instruction which drops
the limit to 0.
A test case is very difficult to produce because it will only fail when the
scavenger is used.
rdar://problem/7894847
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103995 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to override it in order to map register classes to illegal
but synthesizable types. e.g. v4i64, v8i64 for ARM / NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103854 91177308-0d34-0410-b5e6-96231b3b80d8
instructions.
e.g.
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1027<def> = EXTRACT_SUBREG %reg1026, 6
%reg1028<def> = EXTRACT_SUBREG %reg1026<kill>, 5
...
%reg1029<def> = REG_SEQUENCE %reg1028<kill>, 5, %reg1027<kill>, 6, %reg1028, 7, %reg1027, 8, %reg1028, 9, %reg1027, 10, %reg1030<kill>, 11, %reg1032<kill>, 12
After REG_SEQUENCE is eliminated, we are left with:
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
%reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
The regular coalescer will not be able to coalesce reg1026 and reg1029 because it doesn't
know how to combine sub-register indices 5 and 6. Now 2-address pass will consult the
target whether sub-registers 5 and 6 of reg1026 can be combined to into a larger
sub-register (or combined to be reg1026 itself as is the case here). If it is possible,
it will be able to replace references of reg1026 with reg1029 + the larger sub-register
index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103835 91177308-0d34-0410-b5e6-96231b3b80d8
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103802 91177308-0d34-0410-b5e6-96231b3b80d8
v1024 = REG_SEQUENCE ...
v1025 = EXTRACT_SUBREG v1024, 5
v1026 = EXTRACR_SUBREG v1024, 6
= VSTxx <addr>, v1025, v1026
The REG_SEQUENCE ensures the sources that feed into the VST instruction
are getting the right register allocation so they form a large super-
register. The extract_subreg will be coalesced away all would just work:
v1024 = REG_SEQUENCE ...
= VSTxx <addr>, v1024:5, v1024:6
The problem is if the coalescer isn't run, the extract_subreg instructions
would stick around and there is no assurance v1025 and v1026 will get the
right registers.
As a short term workaround, teach the NEON pre-allocation pass to transfer
the sub-register indices over. An alternative would be do it 2addr pass
when reg_sequence's are eliminated. But that *seems* wrong and require
updating liveness information.
Another alternative is to do this in the scheduler when the instructions are
created. But that would mean somehow the scheduler this has to be done for
correctness reason. That's yucky as well. So for now, we are leaving this
in the target specific pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103540 91177308-0d34-0410-b5e6-96231b3b80d8
to LLVM_LIBRARY_VISIBILITY and introduce LLVM_GLOBAL_VISIBILITY, which is
the opposite, for future use by dragonegg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103495 91177308-0d34-0410-b5e6-96231b3b80d8
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103481 91177308-0d34-0410-b5e6-96231b3b80d8
Reverse-merging r103156 into '.':
U lib/Target/ARM/ARMInstrNEON.td
U lib/Target/ARM/ARMRegisterInfo.h
U lib/Target/ARM/ARMBaseRegisterInfo.cpp
U lib/Target/ARM/ARMBaseInstrInfo.cpp
U lib/Target/ARM/ARMRegisterInfo.td
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103159 91177308-0d34-0410-b5e6-96231b3b80d8
Jordy <snhjordy@gmail.com>.
Followup patches will add some tests and adjust to use Subtarget features
for the instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103119 91177308-0d34-0410-b5e6-96231b3b80d8
optimization for non-leaf functions. This will be hooked up to gcc's
-momit-leaf-frame-pointer option. rdar://7886181
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101984 91177308-0d34-0410-b5e6-96231b3b80d8
before reglist were not properly handled with respect to IT Block. Fix that by
creating a new method ARMBasicMCBuilder::DoPredicateOperands() used by those
instructions for disassembly. Add a test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101974 91177308-0d34-0410-b5e6-96231b3b80d8
Pseudocode details of conditional, Condition bits '111x' indicate the
instruction is always executed. That is, '1111' is a leagl condition field
value, which is now mapped to ARMCC::AL.
Also add a test case for condition field '1111'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101817 91177308-0d34-0410-b5e6-96231b3b80d8
FU per CPU arch to 32 per intinerary allowing precise modelling of quite
complex pipelines in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101754 91177308-0d34-0410-b5e6-96231b3b80d8
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101635 91177308-0d34-0410-b5e6-96231b3b80d8
may be called when either the source or destination type is i64, and my
change also hadn't fixed the most obvious problem -- assuming that i64 will
only be bitconverted to f64, ignoring the various vector types.
Radar 7873160.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101615 91177308-0d34-0410-b5e6-96231b3b80d8
case. Also, the 0xFF hex literal involved in the shift for ESize64 should be
suffixed "ul" to preserve the shift result.
Implemented printHex*ImmOperand() by copying from ARMAsmPrinter.cpp and added a
test case for DisassembleN1RegModImmFrm()/printHex64ImmOperand().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101557 91177308-0d34-0410-b5e6-96231b3b80d8
to the UAL syntax of LDCL<c>, instead.
Add a test case for this change which also tests the removal of assert() from
printAddrMode2OffsetOperand().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101527 91177308-0d34-0410-b5e6-96231b3b80d8