From comment about this:
Adjust alignment for HLSL rules
TODO: make this consistent in early phases of code: adjusting this late means inconsistencies with earlier code, which for reflection is an issue.
Until reflection is brought in sync with these adjustments, don't apply to $Global,
which is the most likely to rely on reflection, and least likely to rely
implicit layouts.
This was redundant in two ways:
1) it replicated algorithms owned in the front end, and
2) it sometimes left location information on both a block and its members.
OpSpecConstantOp contains an embedded opcode which is given as a literal
argument to the OpSpecConstantOp. The subsequent arguments are as the
embedded op would expect, which may be a mixture of IDs and literals. This
adds support for that to the remapper binary parser. Upon seeing such an
embedded op, the parser flips over to parsing the argument list as
appropriate for that opcode.
Fixes#882.
The codebase seems to use both “#pragma once“ approach, and “#ifndef / #define” approach,
so I picked pragma once as that one is less typing & less brittle.
When glslang is built with some other build system and lumped/unity builds are used,
without the include guards some headers would get included multiple times, leading to duplicate
declaration errors.
This adds infrastructure suitable for any front end to create SPIR-V loop
control flags. The only current front end doing so is HLSL.
[unroll] turns into spv::LoopControlUnrollMask
[loop] turns into spv::LoopControlDontUnrollMask
no specification means spv::LoopControlMaskNone
This reverts commit cfc69d95af.
* Change CMAKE_INSTALL_PREFIX default on Windows in order
to prevent permission denied errors when trying to install
to "Program Files".
* Use `GNUInstallDirs` in order to respect GNU conventions.
This is especially important for multi-arch/multi-lib setups.
* Specify position independent mode building properly, without
using the historic hack of adding `-fPIC` as a definition.
This makes the build system more portable.
* Only detect C++ (and not C) to slightly speed up configuring.
* Specify C++11 mode using modern CMake idioms.
* Fix some whitespace issues.
The SPIR-V generator had assumed tessellation modes such as
primitive type and vertex order would only appear in tess eval
(domain) shaders. SPIR-V allows either, and HLSL allows and
possibly requires them to be in the hull shader.
This change:
1. Passes them through for either tessellation stage, and,
2. Does not set up defaults in the domain stage for HLSl compilation,
to avoid conflicting definitions.
This PR adds the ability to pass structuredbuffer types by reference
as function parameters.
It also changes the representation of structuredbuffers from anonymous
blocks with named members, to named blocks with pseudonymous members.
That should not be an externally visible change.
This is a partial implemention of structurebuffers supporting:
* structured buffer types of:
* StructuredBuffer
* RWStructuredBuffer
* ByteAddressBuffer
* RWByteAddressBuffer
* Atomic operations on RWByteAddressBuffer
* Load/Load[234], Store/Store[234], GetDimensions methods (where allowed by type)
* globallycoherent flag
But NOT yet supporting:
* AppendStructuredBuffer / ConsumeStructuredBuffer types
* IncrementCounter/DecrementCounter methods
Please note: the stride returned by GetDimensions is as calculated by glslang for std430,
and may not match other environments in all cases.
Makes it easier to include glslang in a larger CMake project---instead
of having to call `target_link_libraries(glslang OSDependent OGLCompiler
HLSL)`, for example, you only need to call
`target_link_libraries(glslang)` and it will pull in the helpers it
needs.
This is also better in terms of cleaning up the "public interface",
of sorts, for building glslang: end-users probably shouldn't need to
know or be explicitly dependent on internal targets.
- Add support for invocation functions with "InclusiveScan" and
"ExclusiveScan" modes.
- Add support for invocation functions taking int64/uint64/doube/float16
as inout data types.
doc.cpp: Add capabilities, scope to the opcodes. Add opcode and
capability strings.
GLSL.ext.KHR.h: Add extension
string.
GlslangToSpv.cpp: Fix handling of opcodes to generate
appropriate SPIR-V.
spirv.hpp: Add capability and opcode
enums.
spv.shaderGroupVote.comp.out: Update SPIR-V output for test
shader.
Since EOpMatrixSwizzle is a new op, existing back-ends only work when the
front end first decomposes it to other operations. So far, this is only
being done for simple assignment into matrix swizzles.
- fixed ParseHelper.cpp newlines (crlf -> lf)
- removed trailing white space in most source files
- fix some spelling issues
- extra blank lines
- tabs to spaces
- replace #include comment about no location
If some DCE is performed such as removing dead functions, then even
if we are NOT stripping debug info, we still must remove the debug
opcodes that refer to the now-dead IDs.
Also, this adds a small change to perform no ID remapping if none
is requested, making spirv-remap properly be a no-op if no options
are given.
Addresses issue #304 and issue #307 by replacing unmatched type OpStores with
per-member copies. Covers assignment statements and most argument passing, but
does not yet cover r-value-based argument passing.
Takes some pressure off of issue #304.
Structures don't inherit locations and then explicitly decorate
members with them, so removed this reason to have another instance
of a structure type.
From the ES spec + Bugzilla 15931 and GL_KHR_vulkan_glsl:
- Update precision qualifiers for all built-in function prototypes.
- Implement the new algorithm used to distinguish built-in function
operation precisions from result precisions.
Also add tracking of separate result and operation precisions, and
use that in generating SPIR-V.
(SPIR-V cares about precision of operation, while the front-end
cares about precision of result, for propagation.)
- Support GL_AMD_shader_ballot (SPV_AMD_shader_ballot).
- Support GL_AMD_shader_trinary_minmax (SPV_AMD_shader_trinary_minmax).
- Support GL_AMD_shader_explicit_vertex_parameter
(SPV_AMD_shader_explicit_vertex_parameter).
- Support GL_AMD_gcn_shader (SPV_AMD_gcn_shader).
This is used by OpenGL, but not Vulkan.
Includes:
- atomicCounter, atomicIncrement, atomicCounterDecrement
- atomic_uint layout-offset checking
- AtomicStorage capability
SPV doesn't allow gaps in the components of the texturing coordinate.
It also removes the shadow reference.
So, close up the components so all used components are together.
For opaque types such as samplers, images, and atomic counters, we want to
reference the actual object in the child function. For a long time, we
used a shadow variable and made a copy of the image/sampler. In 76d0ac1a,
this was changed to not shadow samplers. However, this didn't cover all
opaque types and it also didn't get the pointer storage classes right.
This commit fixes both of these issues.
Fixes#324
The compiler will mark struct members with those builtins, but won't
declare the capability until that member is accessed by some executable
instruction.
Test changes:
- spv.430.vert: was missing ClipDistance capability.
- spv.precise.tese: remove TessellationPointSize capability.
GLSL interpolation qualifiers and auxiliary storage qualifiers are not
mutually exclusive. So when they are translated to SPIR-V decorations, two
independent utility methods should be employed to do this job.
Spec for decorating the OpVariable:
"The remaining variables listed by OpEntryPoint with the Input or Output storage class form the user-defined variable interface. These variables must be identified with a Location decoration"
Spec for decorating struct type:
"The layout of a structure type used as an Input or Output depends on whether it is also a Block (i.e. has a Block decoration).
If it is a not a Block, then the structure type must have a Location decoration"
These capabalities were added on declaration of the members, but
that is considered too aggressive, as those members are automatically
declared in some shaders that don't use them. Now, actual access
is needed to make the capabalities be declared.
1. Sink adding noContraction decoration to createBinaryOperation() and
createUnaryOperation().
2. Fix comments.
3. Remove the #define of my delimiter, use global constant char.
Reimplement the whole workflow to make that: precise'ness of struct
members won't spread to other non-precise members of the same struct
instance.
Approach:
1. Build the map from symbols to their defining nodes. And for each
object node (StructIndex, DirectIndex, Symbol nodes, etc), generates an
accesschain path. Different AST nodes that indicating a same object
should have the same accesschain path.
2. Along the building phase in step 1, collect the initial set of
'precise' (AST qualifier: 'noContraction') objects' accesschain paths.
3. Start with the initial set of 'precise' accesschain paths, use it as
a worklist, do as the following steps until the worklist is empty:
1) Pop an accesschain path from worklist.
2) Get the symbol part from the accesschain path.
3) Find the defining nodes of that symbol.
4) For each defining node, check whether it is defining a 'precise'
object, or its assignee has nested 'precise' object. Get the
incremental path from assignee to its nested 'precise' object (if
any).
5) Traverse the right side of the defining node, obtain the
accesschain paths of the corresponding involved 'precise' objects.
Update the worklist with those new objects' accesschain paths.
Label involved operations with 'noContraction'.
In each step, whenever we find the parent object of an nested object is
'precise' (has 'noContraction' qualifier), we let the nested object
inherit the 'precise'ness from its parent object.
This fixes some vulkanCTS tests that use struct arrays as a member of in/out interface blocks.
From Vulkan spec:
"If it is a not a Block, then the structure type must have a Location decoration. Its members are assigned consecutive locations in their declaration order, with the first member assigned to the location specified for the structure type. >>>>> The members, and their nested types, must not themselves have Location decorations <<<<"
From SPIR-V spec:
"When applied to structure-type members, the Decorations Noperspective, Flat, Patch, Centroid, and Sample can only be applied to the top-level members of the structure type. (Nested objects' types cannot be structures whose members are decorated with these decorations.)"
This adds solution folders that properly group gtest/glslang/hlsl.
This also marks gtest options as advanced so they don't show up
in cmake-gui by default.
Previously GlslangToSpv() reported missing/TBD functionalities
by directly writing to stdout using printf. That could cause
problems to callers of GlslangToSpv(). This patch cleans up
the error reporting logic in GlslangToSpv(), TGlslangToSpvTraverser,
and spv::Builder a little bit to use ostringstream.
Also fixed the usage of GlslangToSpv() in GTest fixtures to
capture warnings/errors reported when translating AST to SPIR-V.
- Add new keyword int64_t/uint64_t/i64vec/u64vec.
- Support 64-bit integer literals (dec/hex/oct).
- Support built-in operators for 64-bit integer type.
- Add implicit and explicit type conversion for 64-bit integer type.
- Add new built-in functions defined in this extension.
Fix issue: #237
1. The code generated for matrix constructor should 1) build column
vectors first, 2) build matrix with the vectors.
2. When there is only one scalar type constituent in vector's
constructor, we should populate the constituent to fill all the slots in
the vector. As for matrix, the single constituent should be populated to
the diagonal positions (top-left to bottom-right diagonal).
remove createSpvConstantFromConstSubTree()
Bool -> uint/int with OpSpecConstantOp OpSelect instruction.
uint <-> int conversion with OpSpecConstantOp OpIAdd instruction.
Note, implicit conversion: `const uint = an_int_spec_constant` is not
supported. Explicit type casting is required: `const uint =
uint(an_int_spec_constant)`